
Research Institute for Advanced Computer Science
NASA Ames Research Center

/At -_0

/-/3o _3

On the Suitability of the Connection _1't
Machine for Direct Particle Simulation

Leonard Dagum

RIACS Technical Report 90.26

June 1990

(NASA-CR-188863) ON THE SUITASILITY OF THE

CONNECTION MACHINE FOR DIRECT PARTICLE

SIMULATION (Research Inst. for Advanced

Computer Science) 179 p CSCL OgB

G3/60

N92-10293

Unclas
0043063

On the Suitability of the Connection
Machine for Direct Particle Simulation

Leonard Dagum

The Research Institute of Advanced Computer Science is operated by Universities Space Research

Association, The American City Building, Suite 311, Columbia, MD 244, (301)730-2656

Work reported herein was supported by the NAS Systems Division of NASA and DARPA via Cooperative

Agreement NCC 2-387 between NASA and the University Space Research Association (USRA). Work was
performed at the Research Institute for Advanced Computer Science (RIACS), NASA Ames Research Center,

Moffett Field, CA 94035.

(_)Copyright by Leonardo Dagum 1990

All Rights Reserved

ii

't

Abstract

This work examines the algorithmic structure of the vectorizable Stanford particle

simulation (SPS) method and re-formulates the structure in data parallel form. Some of

the SPS algorithms can be directly translated to data parallel, but several of the vectoriz-

able algorithms have no direct data parallel equivalent. This requires the development of

new, strictly data parallel algorithms. In particular, a new sorting algorithm is developed

to identify collision candidates in the simulation and a master/slave algorithm is developed

to minimize communication cost in large table look up.

Validation of the method is undertaken through test calculations for thermal relax-

ation of a gas, shock wave profiles, and shock reflection from a stationary wall. In addition

to these test calculations, a large scale two dimensionul simulation for the flow about a

double ellipse geometry is presented and compared to the results for same calculation

performed with the fully vectorized SPS method on the Cray 2.

This investigation provides a quantitative measure of the performance of the Con-

nection Machine for direct particle simulation. The massively parallel architecture of the

Connection Machine is found quite suitable for this type of calculation. However, there are

difficulties in taking full advantage of this architecture because of the lack of a broad based

tradition of data parallel programming. An important outcome Iof this work has been new

data parallel algorithms specifically of use for direct particle simulation but which also

expand the data iparallel diction.

B,.

ILl

!

=

Acknowledgements

The acknowledgements part of a dissertation traditionally is the only place where

the author can escape the objective high ground and let the subjectivity of emotions rule

his writing. Glad of the opportunity, let me begin by expressing the gratitude I owe

Professor Donald Baganoff for his guidance throughout the course of this work. Don is an

outstanding instructor and a visionary thinker, and to work for such as he is an experience

to be cherished. But words cannot do justice to emotion, so rather let me express my

feeling by drawing on the commonality that must certainly exist amongst all who have

completed doctorates, thus to remind you of the special relation that develops between a

Ph.D. advisor and his graduate student.

Research is not usually conducted in a vacuum, and I could not have conducted

this work without the help of innumerable people in the Stanford and Ames research

communities. At Stanford I thank Jeff McDonald, an invaluable source for all information;

Mike Woronwicz, for his insights on particle-surface interactions; Brian Haas, for his help

with multiple species and chemistry; Mike Fallavollita, who kept me afloat on the ethernet;

and Marc Goldburg, for his unbounded knowledge of statistics. At NASA Ames I thank Bill

Feiereisen for providing me with the geometry and results for the double ellipse calculation,

and Forrest Lumpkin who provided me with yet more results for test calculations. I also

would like to thank Chris Lewis, for many valuable discussions on the Connection Machine,

and John Krystynak, who first started me on the road to Paris.

An equally important aspect of fruitful research has been a stimulating social envi-

ronment. Needless to say I am tremendously indebted to my parents pot el amor Y apoyd

que _iempee me dieron, my two brothers, Paul and Alex, and numerous friends, especially

Joanna Meek, with whom I discovered California.

This work was supported in part by the National Aeronautics and Space Admin-

istration (NASA) under grant NAGW-965 and grant NCA2-313, and by DARPA under

Cooperative Agreement NCC2-387 between NASA and the Universities Space Research

Administration (USRA). Generous computer resources were made available by the Numer-

ical Aerodynamic Simulation division of NASA and by the Research Institute for Advanced

Computer Science (RIACS).

iv

Contents

Page

Abstract iv

Acknowledgements v

List of Figures ix

1 Introduction 1

1.1 Motivation for Direct Particle Simulation 1

1.2 Motivation of Current Investigation 3

2 The Connection Machine Computer Architecture 5

2.1 Data Parallel Versus Vectorizable 5

2.2 Virtual Machine Architecture 9

2.2.1 Virtual Processor Sets and Virtual Processor Ratios 10

2.2.2 Communication 11

2.3 I/O Subsystems 12

2.3.1 Mass Storage System 12

2.3.2 Graphics System 13

2.4 General Router Communication Performance 14

2.4.1 Router Performance as a Function of Message Length 15

2.4.2 Effect of Router Contention on Communication 18

3 Implementation on the Connection Machine 22

3.1 Mapping Data to Virtual Processors 23

3.2 Selection of Collision Partners 26

3.2.1 Identifying Collision Candidates 27

3.2.2 Selecting Collision Partners 28

3.2.3 Collision Partner Selection on the Connection Machine 30

3.3 Collision Algorithms 31

3.3.1 Degree of Freedom Mixing Collision Algorithm 32

3.3.2 Implementing the Degree of Freedom Mixing Collision Algorithm . 34

3.3.3 Direction Cosine Decomposition Collision Algorithm 35

3.3.4 Extension to Inelastic Collisions 38

3.3.5 Collisions on the Connection Machine 45

3.4 Sampling Macroscopic Quantities 47

vi

PRECEDft_G PAGE BLANK NOT FILMED

4 Sorting Algorithms On the Connection Machine 51

4.1 Sorting for Particle Simulations on Sequential or Vector Machines 52

4.2 The Radix Sort 60

4.3 Sorting Using Multiple Grids 64

4.3.1 Algorithm for a Single Grid 64

4.3.2 Using Multiple Grids 66

4.3.3 Factors Affecting Performance of the Algorithm 68

4.3.4 Using a Single Grid Effectively 72

4.4 Sorting by Merging Ordered Subsets 73

4.4.1 Two Fundamental Observations 73

4.4.2 The Merged Ordered Subsets Sorting Algorithm 73

4.4.3 Maintaining Statistical Independence 78

4.4.4 When Assumptions Fall 84

4.4.5 Performance and Extension to Three Dimensions 85

5 Implementing General Boundary Conditions 87

5.1 Representation of Physical Space 88

5.1.1 Faceted Geometry Approximation 88

5.1.2 Storage of Geometry Table 91

5.1.3 Definition of a Geometry Space 91

5.1.4 Master and Slave VP Sets 98

5.2 Models for Particle-Surface Interaction 100

5.2.1 Specular Reflection 101

5.2.2 Diffuse Reflection With Surface-Driven Energy Exchange . 103

5.2.3 Diffuse Reflection With Gas-Driven Energy Exchange 105

6 Active Flow Visualization Through the I/O Subsystems 108

6.1 Visualization Technique 108

6.1.1 Mechanism for Visualization 108

6.1.2 Implementation of Visualization Mechanism 110

6.2 Visualization Strategies 111

6.2.1 In Real Time 111

6.2.2 Through Play Back 112

6.3 Extension to Three Dimensions 114

7 Results 117

7.1 Relaxation of Internal Energy Modes 117

7.2 Normal Shock Wave Structure 121

7.3 Shock Reflection 125

7.3.1 Ideal End Wall 127

7.3.2 Isothermal End Wall 134

7.4 Double Ellipse in Hypersonic Flow 140

7.5 Performance 147

vii

8 Multiple Species and Chemistry 152

8.1 Reaction Fundamentals 152

8.2 Implementing Multiple Species 154

8.3 Implementing Chemical Reactions 157

8.3.1 Reaction Mechanics 157

8.3.2 Creation and Destruction of Particles 160

8.3.3 Estimated Cost 161

9 Concluding Remarks 162

8.1 Summary 162

8.2 Conclusions 163

References 165

vln

List of Figures

Figure Page

2.1

2.2

2.3

Schematic of the Connection Machine architecture 6

Communications performance as function of message length 16

Effect of router contention on communications performance 20

3.1

3.2

3.3

Representation of particle data amongst virtual processors 25

Two dimensional scattering process invoving hard spheres 37

Schematic of communications for sampling macroscopic quantities 50

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

Schematic of steps in DSMC sort algorithm 55

Schematic of collision candidate pairing algorithm 56

Schematic of radix sort algorithm _ 62

Using a single grid to compute cell density and cell base index 65

Using a single grid to rank the particles 66

Layout of a multi-grid 67

Using a multi-grid to rank the particles 68

Maximum radius of motion over one time step : . . 74

Schematic of the merged ordered subsets sorting algorithm 77

One possible mapping of nine sources to the merging grid 80

Two deterministic shuffling algorithms 83

5.1

5.2

5.3

5.4

5.5

The faceted body approximation 89

Definition of physical space and geometry space 93

Indirect mapping between geometry space and geometry table 95

Direct mapping between geometry space and geometry table 97

Specular reflection of particle from a stationary plane 102

7.1

7.2

7.3

7.4

7.5

7.6

Relaxation of internal degrees of freedom in a diatomic gas 119

Shock wave structure at Mach 10 in a perfect diatomic gas 123

Shock wave structure at Mach 10 with Zrot = 1.0 124

Shock wave structure at Mach 10 in nitrogen 126

Temperature and density profiles for incident shock wave 129

Temperature and density profiles for reflected shock wave 130

ix

7.7

7.8

7.9

7.10

7.11

7.12

7.13

7.14

7.15

7.16

8.1

Temperature, density, and momentum flux histories at ideal end wall 132

Temperature and density profiles for incident shock wave 137

Temperature, density, and momentum flux histories at cold end wall 139

Density contours in Math 25 flow over double ellipse geometry 142

Density along stagnation streamline 143

Temperature contours in Mach 25 flow over double ellipse geometry 144

Temperature along stagnation streamline 145

Velocity field for Mach 25 flow over double ellipse geometry 146

Velocity along stagnation streamline 147

Performance of the simulation as function of virtual processor ratio 149

Flow chart for collision process with inclusion of chemical reactions 159

Chapter 1

Introduction

Of increasing interest to NASA and the fluid mechanics community in general

has been the development of accurate and efficient methods to treat hypersonic

rarefied flow problems. The renewed interest in hypersonic flight is lead by

research activity in the design of two new classes of vehicles: hypersonic aeroplanes,

of which the National Aero--Space Plane (NASP) will be the first prototype,

and Aero-Assisted Space Transfer Vehicles (ASTV), of which the Aero-Flight

Experiment (AFE) will be the first prototype. The great difficulty and expense

associated with reproducing the flight conditions for these vehicles in ground-based

testing facilities must by necessity be alleviated through computational simulation.

This increased reliance on computational simulation demands e_cient and effective

methods to be developed and implemented on today's supercomputers.

1.1 Motivation for Direct Particle Simulation

The hypersonic rarefied flow regime is distinguished from other flow regimes

by a high Mach number (typically greater than 5) and a high Knudsen number

(typically greater than 0.01). The Knudsen number, Kn, gives a measure of the

degree of rarefaction and is defined as

1 F"

MKn - oc --
Lre ! Re

where _ is the local mean free path for molecules in the fluid and Lrel is a reference

length in the flow. The Knudsen number can also be related to the Mach and

Reynold's number as given in equation (1.1).

As the Knudsen number becomes large the continuum description of the gas,

as given by the Navier-Stokes equations, begins to break down. Specifically, the

constitutive relations which describe the gas and are required to close the set of

conservation equations can no longer be applied. Two separate paths have been

foUowed in the computational simulation of hypersonic rarefied flows. One path

has been to extend the continuum description into the rarefied regime through the

use of higher order closure relations as described by Burnett (1935). This procedure

initially met with limited success because the computational solution of the resulting

set of equations, known as the Burnett equations, was unstable for _11 but the most

modest Mach numbers. Not until the work of Fiscko (1989) were solutions of these

equations available for hypersonic Math numbers. More recently Lumpkin (1990)

was able to extend Fiscko's work to diatomic gases and resolve some inconsistencies

in the procedure for monatomic gases as presented by Fiscko.

The continuum path is an attractive one because of the strong foundation in fluid

mechanics with the use of continuum methods. By far the majority of problems in

fluid mechanics are best described with a continuum formulation and the field is rich

with mathematical methods for soiving problems described in this manner. However

the strength of mathematical tradition alone should not preclude consideration of

more physically based methods of simulation. The alternative path then is to accept

the molecular nature of the gas in the rarefied regime and perform a direct particle

simulation.

The direct particle simulation assumes a gas can be described by a collection

of simulated molecules, or particles, and thus completely avoids any need for

differential equations explicitly describing the flow. By accurately modelling the

microscopic state of the gas the macroscopic description is obtained through the

appropriate integration. The primary disadvantage of this approach is that the

computational cost is relatively large. Therefore, although the molecular description

of a gas is accurate at all densities, a direct particle simulation is competitive only

for low densities where accurate continuum descriptions are difficult to make.

1.2 Motivation of Current Investigation

The most common method of direct particle simulation in current use is the

direct simulation Monte Carlo (DSMC) method. The DSMC method was originated

by G. A. Bird in 1963 and has evolved over 27 years into a powerful tool for

the analysis of rarefied gas flows. It has a rich history of providing accurate flow

descriptions in this difficult regime, however the method was originated before the

advent of supercomputers and is best suited for implementation on a dedicated

minicomputer (Bird (1980)). Many of the algorithms in the DSMC method are not

efficient on vector--oriented or massively parallel computers. With such computers

there is a distinct advantage to be gained by using the Stanford particle simulation

(SPS) method (Baganoff and McDonald (1990)). The algorithms in the SPS

method are specifically designed to make efficient use of current vector computer

architectures. Part of the motivation of the current work was to investigate the

applicability of the SPS method on a massively parallel computer architecture like

that of Thinking Machines' Connection Machine.

The current direction for supercomputer architectures is towards increased

parallelism as a means of overcoming the physical and technological limits with

uniprocessor systems. Multi-processor architectures are often classified by grain

size, and although no single or perfect definition of grain size exists it loosely

describes node size or complexity. Coarse-grain systems have relatively few but very

complex processors whereas fine-grain systems have many very simple processors.

The simplest step toward parallelism is through coarse-grain parallel architectures.

An example is the Cray Research line of supercomputers which went from a single

processor in the Cray 1 to four processors in the Cray 2 and most recently up to

8 processors in the Cray Y-MP. At the research frontier of parallel architectures

axe fine-grain systems. These are massively parallel architectures with thousands

of processors working concurrently on a single computation. There are clear

indications that the future of supercomputing lies at least in part with massively

parallel architectures, therefore it is appropriate and timely to investigate the

suitability of this architecture for direct particle simulation.

The Connection Machine serves as a useful test bed for this study; its

massive parallelism is supported by a very general communication network which

is absolutely necessary for supporting the random motion of the particles. The

massively parallel architecture provides a computational performance greater than

any vector-oriented computer, however in most applications of practical interest

there is also a price in communications which must be assessed before the overall

performance of the machine can be determined. Rather than judge the Connection

Machine on absolute performance alone, this investigation takes a broader view and

attempts to answer the question: "What price for parallcliJrn._' This question is

answered in three steps. The first step is to determine the cost of communication

in the problem. This is the cost of communication relative to computation and is

a value which should remain constant regardless of the size of problem or machine.

The second step is to judge this cost in an absolute sense through a performance

comparison of the Connection Machine with a vector computer, in this case the

Cray 2. This gives a quantifiable answer to the price for parallelism. The third

step introduces a less quantitative element. This step is to judge the effort required

to program the Connection Machine compared to programming the Cray 2. By

carrying out these three steps a full view of the Connection Machine is obtained

and the suitability of this machine for direct particle simulation may be accurately

judged.

Chapter 2

The Connection Machine

Computer Architecture

This chapter is meant to highlight the architectural features of the Connection

Machine which distinguish it from conventional computers. Emphasis is given to

those attributes which either help or hinder the implementation of a direct particle

simulation on this machine. To some extent the precise technical description of the

machine is de-emphasized in favor of the more abstract architectural model which

should remain accurate over future models of this machine.

2.1 Data Parallel Versus Vectorizable

The Connection Machine is most often characterized as a massively parallel

computer. In the largest configuration currently available there are 65536 processors

each with 32 kB of memory. The processors are referred to as data processors

because they store no part of the program and act on their stored data under the

control of a front end computer. The front end computer serves to carry out scalar

calculations and issue data parallel instructions to the Connection Machine. Figure

2.1 is a schematic of the architecture. Between the data processors and the front

Nel_I!I I

TTil I
i_21 I

iiJ)J
Connection Machine

Parallel Processing Unit

Connection Machine

processors

Connection Machine

processors

Sequencer Sequencer

0 3

..@

e.-- -.-4

Sequencer Sequencer
1 ! 2

0,--

Connection Machine

processors

Connection Machine

processors

' I I r

ConnectionMachine I/O System

Front end 0

(DEC VJLX or

Symbolic-)

Bus interface

Front end I

(DEC VAX or

Symbolic.)

Bus interface

Front end 2

(DEC V_X or

Srmbolics)

Bus interface

i
B

Front end 3 /

(D]BC V4.X or

ST=._Uc,,)

Bus interface

I
Data [Data Data

Vault i Vault Vault

Graphic

Display

Network

Figure 2.1 Schematic of the Connection Machine architecture.

end is a sequencer whose purpose is to broadcast data parallel instructions from

the front end to the Connection Machine processors. In mapping a problem to this

architecture the data must be distributed amongst the processors such that one

processors is associated with each data element.

Algorithms suited for this type of architecture are known as data parallel

algorithms (Hillis and Steele (1986)) because the parallelism is fine-grained and

exists only across the data. In other words, the steps in the algorithm are meant to

be carried out in parallel across large sets of data rather than in parallel through

multiple threads of control, as is the case in a control parallel algorithm. More

commonly this distinction is made in characterizing different parallel architectures.

The Connection Machine is characterized as a Single Instruction Multiple Data

stream (SIMD) machine as opposed to a Multiple Instruction Multiple Data stream

(MIMD) machine (Flynn (1972)). However, the architectural classification is

somewhat broader than the algorithmic one and the SIMD model includes vector

architectures. In this sense the algorithmic classification is more specific and data

parallel algorithms can be applied only to massively parallel architectures in the

same way that vectorizabIe algorithms can be applied only to vector architectures.

The distinction between data parallel and vectorizable algorithms is subtle but

very important for the context of this thesis. In many cases vectorizable algorithms

can easily be translated to data parallel algorithms, however it is not true that all

vectorizable algorithms can be put in data parallel form. Chapter 5 presents an

example of this which is especially important in a direct particle simulation.

The difference between what is vectorizabie and what is data parallel has to do

with the degree of independency required of the data. If we define a quantity, A,

as the minimum distance between dependent data elements of a data set, then the

degree of independency, I, can be defined as

A

I= (2.1)

where N is the total number of data elements in the data set. Clearly, a data

parallel algorithm can operate only on a data set with I = 1.0; there can be no

dependencies between any of the elements in the data set on which an instruction is

to operate. Therefore in solving a problem with a data set of N elements, if A < N

it becomes necessary to restrict instructions to operate on just N _ elements such

that A = N _ so I(N _) = 1.0.

In a vectorizable algorithm there can be no dependencies between the data

elements of a vector. If the vector length is V then the algorithm can be applied

to any data set with I _> V/N. There are then two ways of making the comparison

between vectorizable and data parallel algorithms; one can consider how data

parallel algorithms can be made vectorizable or one can consider how vectorizable

algorithms can be made data parallel.

To vectorize a data parallel algorithm typically requires looping over the

N I elements of a single data parallel instruction with NI/V repetitions of the

equivalent vector instruction. Therefore in problems where N ! _> V one finds

that a massively parallel architecture carrylng Out the data parallel algorithm will

have significantly better performance than a vector architecture carrying out the

vectorizable algorithm. The current high level of interest in the scientific computing

community for massively parallel architectures is directly related to this point.

For many scientific problems, not only is N ! _ V but also N r is a constant

fraction of, or equal to, N, the total number of data elements in the problem.

In such a situation the issue of _calability becomes important. Vector machines

have maintained relatively constant vector lengths (typically V = 64) throughout

their development and improvements in performance have come about primarily

through faster clock speeds and memory access times. The performance associated

with vector machines is due to pipelining the operations such that optimally one

operation is performed every clock cycle in every functional unit. For this reason

increasing the vector length does not usually improve performance. Consider then a

problem which scales linearly with N. If one doubles the problem size from N data

elements to 2N data elements, a vector machine will require double the number

Of instructions and must operate at twice the clock speed to solve the problem in

the same amount of time. On the other hand, a massively parallel architecture

will require the same number of instructions but will need double the number of

processors to solve the problem in the same amount of time. Since the massively

parallel architecture depends on the scalability of a single processor to create a

machine with N processors, it seems likely that scaling up to 2N processors is a

simpler task than doubling the clock speed of the vector machine.

8

Now consider what is required to make data parallel a vectorizable algorithm.

Typically this will involve determining N I for the data set of the problem and

replacing NI/V repetitions of the vector instruction with a single data parallel

instruction operating on N I elements. Therefore in problems where N r _ V one

finds that massively parallel architectures have significantly poorer performance

than vector architectures. Consider for example a Connection Machine with 65536

processors and a vector machine with vector length 64. If N I = 64 then on the

Connection Machine one will have to repeat the data parallel instruction 1024 times

with different sets of 64 processors. Although feasible, this would be tremendously

time consuming because the individual processors of the Connection Machine are

rather slow and the performance of the machine depends on employing large

numbers of these processors concurrently. Therefore the vectorizable algorithm

for this data set could not be converted directly to a data parallel algorithm

without a great loss in performance. In such a situation it becomes necessary

to replace the vectorizable algorithm with an alternative data parallel algorithm.

An important result of the current work has been identifying such instances for

the vectorized direct particle simulation and arriving at suitable replacement data

parallel algorithms.

2.2 Virtual Machine Architecture

As seen from the previous section, an important property for a massively parallel

architecture is scalability. The property of scalability must exist at both the

hardware and the software level. On the Connection Machine hardware scalability

is supported through the sequencers which connect the front end computer to the

Connection Machine data processors (see Figure 2.1). A single Connection Machine

system can have up to four sequencers each broadcasting to either 8192 or 16384

processors depending on the installation. A single user can be connected to 1, 2,

or 4 sequencers such that in the larger configuration the user can employ 16384,

32768, or 65536 processors for the calculation. Usually the number of processors

affects only the size of problem that can be handled.

The hardware scalability is enhanced in the software by which a user programs

the machine. The software presents to the user an abstract version of the

Connection Machine consisting of virtual proceJ_orJ. Each physical processor is

made to simulate some greater number of virtual processors (or VP's as they are

often referred to) and a program can assume any appropriate number of virtual

processors are available for the calculation. In simulating virtual processors, a

physical processor divides its memory evenly amongst the virtual processors and

repeats each instruction once for every virtual processor. Therefore the number

of virtual processors is limited by the amount of memory in a physical processor.

Also, there cannot be fewer virtual processors than physical processors. Note that

in the remainder of this thesis the terms processor and virtual processor will be

used interchangeably, and the term physical processor will be used to specify the

hardware element.

2.2.1 Virtual Processor Sets and Virtual Processor Ratios

To implement a data parallel algorithm on the Connection Machine it is

necessary to associate one virtual processor with each element of the data set. The

set of all virtual processors associated with a data set is known as a virtual proceJJor

set, or VP set. VP sets are allocated dynamically therefore their size (the number

of virtual processors in the set) may be made to fit conditions in the calculation.

The number of VP sets in a single calculation may vary although only one VP set

may be active at any time.

The virtual processor ratio, or VP ratio, is the ratio of virtual processors to

physical processors in a VP set. Because virtual processors are created through

binary division of a physical processor's resources, the VP ratio must always be a

power of two. In simulating virtual processors each physical processor will execute

an instruction a number of times equal to the VP ratio, therefore the machine

performs very differently at different VP ratios. There is an essentially linear

relation between VP ratio and execution time for VP ratios greater than about

4.

At VP ratios less than or equal to 4 there is a marked deviation from linearity.

10

This is due to the overhead associatedwith broadcasting an instruction to the

physical processors.For lowerVP ratios the time required by the physical processors

to execute an instruction becomes comparable to the time for the instruction to

arrive from the front end. Therefore the processors may be idle for a significant

fraction of the calculation awaiting instructions from the front end. At higher

VP ratios the time to broadcast an instruction becomes insignificant compared to

the time to execute the instruction; if all the virtual processors are active for the

calculation then the overhead in broadcasting the instruction is amortized over the

greater amount of work carried out for the instruction.

Occasionally there arise situations where an instruction must be carried out

over a VP set where not all the virtual processors are active but in each physical

processor the _ame virtual processors are active. For example, the first virtual

processor of each physical processor in a VP set may be the only one active for

the instruction. In such a situation the use of field aliaJin 9 becomes profitable.

Without describing the mechanics of this operation, let it suffice to say that field

aliasing allows the physical processor to execute an instruction at a lower VP ratio

(that is, repeating the instruction over a fewer number of virtual processors) than

is associated with the data on which the instruction is to operate. Therefore in this

example the instruction could be executed at a VP ratio of 1 (that is, only once by

each physical processor) although the variable affected by the instruction resides in

a VP set of VP ratio greater than 1.

2.2.2 Communication

The Connection Machine supports two mechanisms for interprocessor commu-

nication. The more general mechanism for communication employs the router,

a hardware device which allows any processor to communicate with any other

processor in the machine. Because of its generality, communication of this sort can

be relatively slow. A less general but much faster mechanism for communication

employs the NEWS grid. The NEWS grid is a software construction. Processors

are organized into an n-dimensional grid and communication is allowed only

11"

between immediate neighbors in the grid. The initials NEWS stand for the four

directions North, East, West, and South in a two dimensional grid. Because the

communication pattern is fixed it can be optimized for speed. Such optimization

is not restricted to n-dimensional grid communication and most recently it has

become possible to optimize any general communication pattern which is to remain

fixed throughout a calculation. However, no such compiler optimization exists for

general communication with a dynamically changing pattern.

The discussion in the previous subsection concerning the execution time as

a function of VP ratio is most accurate for operations which take place within

each virtual processor independently of other virtual processors. Operations which

perform communication have a more complicated and therefore less predictable

behavior. Nonetheless there is essentially a linear relation between VP ratio and

execution time for VP ratios greater than about 4 so long as the other variables

controlling communications performance are fixed. A later section analyzes in some

detail those variables controlling the performance of general router communication.

2.3 I/O Subsystems

The fine-grained parallelism inherent to the Connection Machine architecture

also extends to the I/O subsystems. This parallelism allows very high bandwidth

links to exist between the data processors of the Connection Machine and external

I/O devices. Two I/O devices in particular deserve special attention: the mass

storage system, known as the Data Vault, and the graphics system.

2.3.1 Mass Storage System

The Connection Machine data processors may be connected to one or more mass

storage systems, or DataVaults, each capable of storing up to 20 GB of data. The

DataVault stores data in an array of 39 disk drives with 32-bit words spread across

32 drives and an additional 7 bits of Error Correcting Code (ECC) stored in the

12

remaining 7 drives. Failure of any one of the 39 drives does not prevent reading

of stored data since the ECC allows the detection and correction of any single bit

error.

The data processors send and receive data via I/O controllers. Up to eight I/O

controllers may be configured in a system, each allowing transfer rates of 40 MB per

second for a maximum combined rate of 320 MB per second. Each I/O controller

connects to 8k physical processors through 256 I/O data lines. Each Connection

Machine chip contains 16 physical processors and is connected to one I/O data line,

therefore 8k physical processors are connected to 512 I/O lines. The controller can

connect simultaneously to only 256 of these and must treat its 8k processors as two

banks of 4k each. A bank will pass 256 bits in parallel to its associated I/O controller

and parity checking of each byte adds another 32 bits to each data transfer. An

I/O controller can buffer 512 such transfers in its own internal memory. The I/O

controllers are connected to the DataVault through the Connection Machine I/O

bus which is 80 bits wide (64 data bits, 8 parity bits, and 8 control bits) so the

I/O controller has to multiplex and demultiplex between the 256-bit words of its

internal buffer and the 64-bit bus.

2.3.2 Graphics System

The Connection Machine graphics system consists of a frame buffer and a

hlgh-resolution color monitor. The frame buffer is a single module which resides

in the Connection Machine backplane in place of an I/O controller. Because it is

connected directly to the backplane rather than through the I/O bus the framebuffer

can receive data from the Connection Machine processors at rates up to 256 MB

per second.

The framebuffer contains a large video memory to store the raster image data.

There are 28 planes of memory, each plane providing one bit per pixel and able

to describe 221 (over two million) pixels. The 28 planes are divided into 4 buffers;

the red, green, and blue buffers each have 8 planes and the "overlay" buffer has 4

planes. There are three color lookup tables (red, green, and blue) each with 259

13

entries of 8 bits. The first 256 entries map the colors for the corresponding red,

green, or blue buffer and the last 3 entries map the overlay buffer.

To generate the analog video signal for the monitor the framebuffer requires

24 bits of data per pixel. These 24 bits per pixel are taken from the three color

lookup tables. Two alternate schemes are possible: each color lookup table may

independently supply an 8-bit entry thus allowing 224 possible colors for every pixel,

or each color lookup table may supply the same 8-bit entry thereby allowing only

28 or 256 possible colors for every pixel.

The first scheme is known as "24--bit mode" and has the advantage of allowing a

choice from 224 colors for simultaneous display. However this mode requires 24 bits

of data per pixel to be transferred from the Connection Machine for each displayed

image. On the other hand the second scheme, known as "8-bit mode", requires

only 8 bits of data per pixel. Of course only 256 different colors can be displayed

simultaneously in this mode but there exists an additional advantage. In 8-bit

mode the framebuffer supports double buffering of output data, therefore data may

be displayed from one buffer while a new image is being written to another buffer.

Once the other buffer is completely loaded it can be switched with the displayed

buffer in a synchronized manner such that the change appears instantaneous and

the viewer never sees parts of two different images at the same time.

The overlay buffer is useful for creating independent or temporary images to be

overlaid on the display. This allows the main image to be changed without having

to repeat static portions of the display such as text or visual aids.

2.4 General Router Communication Performance

Because of the random nature of particle motion in a particle simulation,

and because many of the algorithms to be implemented rely on table look ups

which require cross VP set communication, it is often necessary to use the

router for general communication between processors. The performance of router

14

communication is a complex function dependent on many variables and is difficult to

predict for any given application. This section identifies two variables which strongly

affect router performance and which are especially important in the context of a

particle simulation. Some of these issues are touched upon in Myers and Adams

(1988) but are developed more fully here for the present purposes.

2.4.1 Router Performance as a Function of Message Length

Communication time in parallel computers is usually assumed to be a linear

function of message length. On the Connection Machine the relation is not as

straightforward. Figure 2.2 shows the normalized cost for router communication

as a function of message length. The normalized cost is defined as the total time

for communication divided by the time to send one 32 bit word. The curve was

determined by measuring the time required for all the processors in a VP set to

send a message to a different processor with a random address in the VP set. This

test differs from the one performed by Myers and Adams (1988) in two ways: the

Hamming distance between a sending and receiving processor is not fixed, and the

test was performed for VP ratios greater than one. It was desired here to in some

ways mimic the router communication most often required in a particle simulation,

therefore Hamming distance was not fixed. Myers and Adams correctly observe

a sharp improvement in communication performance when the Hamming distance

is less that five thereby constricting communication to be between processors on

the same chip. Since the Hamming distance can rarely be controlled in a particle

simulation it was desired to arrive at a relation averaged over a distribution of

Hamming distances thereby removing it as a factor.

The other difference from Myers and Adams, that is the use of VP ratios greater

than one, is only partly an effort to reproduce conditions of interest in a particle

simulation. More important is the fact that at lower VP ratios the front end

computer begins to affect the performance and the measurements become difficult

to interpret. Generally, for VP ratios greater than four the VP ratio has a linear

effect on performance and can be removed from consideration by using the similarity

construct

15

4.5

.I--I

[...

¢D

z

4

3.5

3

2.5

2

1.5

0.5'
0

i
! .

I I I I I I I I

20 40 60 80 100 120 140 160 180 200

Message Length (bits)

Figure 2.2 Communication time is linear as a function of message length only when the length is

an integer number of 32 bit words. There is an n_lditionnl overhead for sending fractional words.

t

T = VP''R (2.3)

where t is the measured time and VPR is the VP ratio.

Two very important features of figure 2.2 deserve discussion. The first is the

"staircase" shape of the curve and related to this the indication that for message

lengths less than 32 bits the communication time is essentially constant. This

is somewhat unexpected since the Connection Machine processors axe bit serial

and one would expect a linear relation between communication time and message

length measured in bits not in words. However, from this figure one can conclude

that the router operates on 32 bit words unlike the processors which operate on

single bits and have memories that are bit addressable. It is very important to

16

understand this difference between the way processors treat data and the way

the router treats data. Because the processors are bit oriented it is tempting to

believe that the same is true of the router and that one could achieve substantial

improvements in communication performance by reducing message lengths to the

minimum number of bits necessary. However it is obvious from the figure that

message lengths consisting of _:fractional" words introduce an additional overhead

to the communication time, therefore in designing algorithms which require general

router communication it is best to consider sending messages of lengths evenly

divisible by 32. In relation to this it is especially important to realize that sending

a single bit through the router will require the same amount of time as sending

a whole word. This is unfortunate since often it is desirable to reduce router

contention (discussed in the next section) by sending flags to processors which need

not participate in the communication. However such an operation incurs a heavy

overhead penalty and rarely is profitable.

The second feature of figure 2.2 which should be noted is the sharp rise of

the curve for message lengths greater than 128 bits. Again this is contrary to

what one would expect. That is, the relation between communication time and

message length was found to be linear for lengths consisting of whole words and one

would expect it to remain linear regardless of the number of words in the message.

Unfortunately this is not true, and it is clear from figure 2.2 that the router has

a maximum message length of 128 bits. If this length is exceeded the router will

simply buffer the excess bits until it can repeat sending the message with the extra

bits. Consequently the overhead for sending a message gets repeated if the message

length is greater than 128 bits. This maximum message length, not surprisingly,

corresponds exactly to the maximum integer length on the Connection Machine

which also is 128 bits.

The overhead in sending a message through the router is approximately equal

to half of the cost of sending a single word. If the message length is an integer

number of 32 bit words, then the cost of communication using the router is given

by

17-

C = 0.52L + 0.48[L/4] (2.4)

where C is the normalized cost, that is the total communication time normalized

by the time to send a single word, and L is the message length measured in words.

Equation (2.4) is just a linear fit to the curve of figure 2.2 when only whole words

are considered.

2.4.2 Effect of Router Contention on Communication

Contention for hardware resources can occur in all computer architectures and

algorithms should be designed to avoid or limit this as much as possible. For

example, on vector oriented computers such as the Cray 2 contention most often

arises as memory bank conflicts, that is the memory system is unable to keep

pace with the processor which must then wait idle as the memory system services

the memory request. A similar situation exists on the Connection Machine, here

contention most often arises in the message routing hardware. There is a router

node for every 16 physical processors (or PE's for physical elements), which make

up a chip. Therefore if more than one of these needs to send a message through the

router there will be contention. This type of contention will be referred to as router

node contention in order to distinguish it from router network contention which is

discussed below. Myers and Adams (1988) observe a linear relation between the

number of PE's communicating off-chip and the time for communication, this is the

expected result for router node contention. There is an initial overhead for setting

up the communication after which there is a fixed cost for every message sent, hence

the relation is linear. This observation has limited application in the current context

of a particle simulation since rarely is the communication pattern so regular. One

possible application is in the case of look up tables where it is known a priori that

some entries will be required more often than others. Here one should consider the

possibility of spreading the more common entries amongst the greatest number of

router nodes in order to minimize node contention.

Router network contention refers to the contention which arises in the router

18

network from heavy network traffic. Router network contention can be reduced

by limiting the number of processors which actually need to communicate, this

is generally more feasible in a particle simulation than is the direct reduction of

router node contention. It is important to realize that the two types of contention

are essentially decoupled. In other words, it is possible for all the processors served

by a particular node to require router service, however once that node has sent all

the messages the transit time is faster because there is less traffic in the network.

Overall then there is an improvement in communication performance even though

for that node there was no reduction in node contention.

It was desired to test the effect of router network contention in order to better

understand what advantage there exists in limiting it. The test conditions were

similar to those of the previous section in that message destinations were random

and the test was performed for VP ratios greater than four. However the test here

consisted of measuring the communication time, as the fraction of active processors

in the VP set was reduced. Furthermore the active processors always occupied

continuous addresses in the VP set. For example if there were 64k processors in

the VP set and only one quarter of these were active then they would have had

addresses from 0 to 16383. Note that if one wanted to test the effect of router node

contention as described above then for the same example every fourth processor in

the VP set would have been active, that is processors 0, 3, 7,..., 65535.

The results of this test are presented in figure 2.3. Once again it is possible

to use a similarity construct to eliminate the effect of changing the VP ratio. The

cost also has been normalized by the maximum time for a given VP ratio, therefore

the curve in figure 2.3 is true for all VP ratios greater than four. The normalized

cost, C, is defined as C = T/tmaz where T is defined in (2.3) and tmaz is the

communication time measured with all the processors active. Note that the plot

in figure 2.3 is logarithmic in both axes; the abscissa corresponds to the base 2

logarithm of the fraction F of processors active for the communication.

The interesting feature in figure 2.3 is that the curve is not linear. Consider for

now just the portion of the curve for log2(F) greater than -9. This portion of the

curve is steepest near -1 and levels off as it approaches -9. Clearly then, the greatest

19

O

O
Z

lO 0

10-1
-12 -10 -8 -6 -4 -2 0

log2(fraction active)

Figure 2.$ Router network contention has a non-linear effect on the communication cost. The best

improvement in performance is observed in the initial reduction in network frame. The dramatic

drop in communication cost when the fraction active is reduced beyond _ is due to the reduction
in router node contention which has a linear effect on communication cost.

improvement in performance occurs in the initial reduction of network traffic, that

is when the fraction of processors active for the communication is reduced to one

quarter or one eighth of the total. Beyond that there is only limited improvement

in performance and router network contention is not a dominant factor.

The dramatic drop in the curve for log2(F) less than -9 is simply the effect

of reducing the router node contention. There are 16 physical processors per node,

therefore for 8199. physical processors (the number used for this test) there are

512 router nodes. Once the fraction F is reduced to _-_ the only remaining

active processors are all in the same node and any further reductions will result

in decreased node contention.

2O

From figure 2.3 it should be evident that contention plays a very important role

in determining the performance of router communication. There can be up to an

order of magnitude improvement by reducing both node and network contention,

and it can be quite profitable to design algorithms to take advantage of this.

21

Chapter 3

Implementation on the Connection Machine

The initial, and therefore fundamental, question to be addressed in imple-

menting the direct particle simulation method (and in general any method) on

the Connection Machine is that of mapping the data to the processors. All the

succeeding algorithms used in implementing the method will depend on how the

data is distributed amongst the processors and careful attention must be given

to this question. Once a mapping has been determined it is possible to consider

designing algorithms for the implementation.

A single time step of the direct particle simulation method is comprised of five

events which include:

1) collisionless motion of particles

2) enforcement of boundary conditions

3) pairing of collision partners

4) collision of selected collision partners

5) sampling of macroscopic flow quantities

The first two events are concerned with the translational motion of the particles.

The next two events are concerned with the collision of particles and the last event

22

concerns the realization of the solution from the flow simulation. This chapter

considers the implementation of the last three events and defers the first two to

Chapter 5.

3.1 Mapping Data to Virtual Processors

A key issue in the implementation of a particle simulation on the Connection

Machine is the mapping of data to virtual processors. Two approaches may be

taken---one can map computational cells to individual processors or one can map

individual particles to individual processors. Note that the term processor refers

to virtual processor and not to physical processor. Consider the ceils-to-processors

mapping first. Such a mapping is appealing for its apparent simplicity, however if

such a mapping is implemented it must be dynamically load balanced, otherwise

the calculation will suffer from inefficient hardware utilization and wasteful memory

management. Without load balz_acing, computations are slowed to the rate of

the most populated cell and the memory assigned to each processor must be

great enough to accommodate the highest density of particles encountered in the

simulation. Assuming there is sumcient memory to accommodate the particles

in these cells, one will find throughout most of the calculation a great number

of processors will be idle with large parts of their memory unused. Therefore to

reduce these inef[iciencies it is necessary to remap the cells to the processors as the

calculation progresses.

Consider then how one would remap the cells to load balance the problem.

The simplest scheme is to allow each processor to represent an integer number of

cells, therefore data for particles in a cell cannot be spread across processors. This

scheme does not produce a perfect load balance but has the advantage of being

relatively straightforward to implement. Unfortunately, not allowing particle data

to be spread across processors immediately fixes a maximum cell number density

that can be accommodated by a processor. The amount of memory associated with

each physical processor (usually 8 kB) is sufficiently limited that conditions can

often exist where the cell number density is too great for the associated data to be

23

stored in a single processor. Therefore this scheme is too restrictive and would not

be generally useful.

A more general scheme would allow each processor to represent any number of

cells including fractions, such that data for particles in a cell could be spread across

processors. Clearly this scheme would lead to a perfect load balance and would not

be subject to the restrictions of the first approach. However, implementing such

a scheme is much more dimcult. In particular consider that an explicit mapping

of the cells to the processors would have to exist in a distinct VP set such that as

particles move from one cell to another the processors could know where to send the

particles' data by consulting the mapping. This mapping would have to be consulted

by each processor once for each different cell to which its particles had moved. In

addition, there would be some dimculty with obtaining information for the cells

when the particles in a cell are distributed across processors. These difl:iculties are

not insurmountable, however they unnecessarily complicate the implementation and

there is no clear advantage to be gained by employing such a mapping.

The alternative approach of mapping particles to processors is the one taken

here. It eliminates the concern regarding load balancing by virtue of assigning a

distinct processor to the dement in the finest grain parallel decomposition of the

problem. However, the problem solution still requires a connection between the

particles and the cells, that is, the particles need to know of other particles in the

same cell. This is accomplished by arranging the data such that adjacent processors

in the one dimensional VP set created for the data set are representing particles in

the same cell in physical space (see figure 3.1). Note that the data for particles is

allowed to spread across physical processors but the virtual processor abstraction

makes this transparent. This mapping makes the programming simpler because the

object represented by each processor is consistent across all processors. In other

words, the data stored in each processor is always associated with a single particle.

This is quite different from the cells-to-processors mapping discussed above where

the data stored in a processor could be associated with some variable fraction of a

cell or more than one cell. Furthermore, the particles-to-processors mapping allows

the calculation to proceed at a much higher VP ratio which is a distinct advantage

24

position

velocity

energy

position

velocity

energy

position

velocity

energy

position

velocity

energy

position

velocity

energy

Figure 3.1 Representation of particle data amongst the Connection Machine processors. Each

virtual processor stores the data for a single particle in s one dimensional virtual processor set.

Neighboring processors in this set represent peaticles in the same cell in physical space.

over the cells-to-processors mapping.

There are three advantages to be gained by going to a higher VP ratio. The

first is in the reduced time in communication. As the VP ratio increases there is a

corresponding decrease in the relative time spent in communication because more

of the virtual processors tend to be on the same chip and therefore less use is made

of the router. The second advantage is in the sequencing of instructions from the

front end to the Connection Machine. There is a FLxed overhead associated with

this step which is amortized over more virtual processors with higher VP ratios.

This overhead is what accounts for the difference between the real time and the

CM_time reported by the Connection Machine timer. The CM_time corresponds

to the amount of time the Connection Machine processors are busy and can be

substantially lower than the real time elapsed for the computation (as measured by

the front end computer) when the VP ratio is low and the time spent in broadcasting

the instruction from the front end becomes a substantial fraction of the total. The

final advantage to be gained from higher VP ratios is in improved floating point

performance. With a higher VP ratio the pipelines in the floating point accelerators

can be kept full and floating point calculations proceed at their fastest rate.

2G

In further discussing the present implementation of a particle simulation, it is

useful to make clear the distinction between the particles and the processors which

simulate them. For the diatomic gas molecules of the model used, the physical

state of a particle is completely defined by its position, its translational velocities,

and its internal energy, i.e. xi, ui, EroS, Erib. The present implementation is two

dimensional, therefore this representation requires seven distinct values. However,

it is useful and necessary for the processors to store more information than just the

physical state of the particles. The additional information stored by the processors

includes the ceU index, and depending on the particular collision algorithm either

a five element permutation vector (or permutation sequence), or a two element

vector of distributed random numbers. The cell index is a distinct index value

that identifies the cell occupied by the particle. The two dimensional grid of

ceils is mapped to one dimension such that only a single value is necessary to

identify a particular cell. The extension to three dimensions is straightforward.

The permutation vector is a permutation of five numbers, 0 through 4, used in

the degree of freedom mixing collision algorithm to re--order the relative velocity

components. The stored random numbers are used in the alternative direction

cosine decomposition collision algorithm which is most efficiently implemented by

storing a table of random direction cosines to be used in the algorithm. The table is

distributed across the processors such that one row of the table is split between two

consecutive processors. This is done to minimize the storage requirements. Since

two particles participate in a collision, the look up values necessary for the collision

can be stored across two processors.

3.2 Selection of Collision Partners

Having decided upon a mapping of the data to the processors, it is appropriate

to consider the ramifications of this decision on the algorithms to be implemented.

The first algorithm to be considered here is the selection of collision partners. This is

a two step process which requires first identifying collision candidates, and then from

26

these selecting colliding partners. It is important to distinguish between candidates

for collision and actual partners in a collision. Collision candidates are sampled

randomly from the particles in the same discrete volume of space in the simulation.

The selection of coLlision partners is made by considering the interactive potential

of the sampled collision candidates.

3.2.1 Identifying Collision Candidates

To identify collision candidates and for sampling macroscopic quantities from

the flow solution, it is necessary to introduce a grid of cells associated with

discrete regions in the simulated space. Since particles occupying the same cell

are neighboring particles in physical space, these then are considered collision

candidates.

McDonald and Baganoff (1988) argue for small, geometrically simple and similar

cells on the basis that a simple and regular grid reduces much of the overhead in

identifying collision candidates and more easily allows vectorizatlon. Furthermore,

small cells allow greater resolution of macroscopic flow gradients. These can be

important even in low density regions of the flow, (for example in the recirculation

region in the wake of a blunt body (Woronowicz and McDonald (1989)) and it is not

sufficient to assume low density regions do not require small ceils. Smaller cells do,

however, lead to fewer particles per cell which correspondingly reduces confidence

in distributions sampled from within the cells. Therefore it is important with the

present method to be able to handle larger numbers of particles than are typically

considered with other methods, and indeed this has been a principal focus in the

development of the SPS method.

These considerations lead to a rectangular grid of ceils of unit normal width; the

cells are cubic in three dimensions and square in two dimensions. Special attention

must be given to the fractional cells created by boundaries defining the body in the

simulation. In order to account for the fractional cell volume being considered,

an adjustment must be made in the rule used for selecting coUision partners.

Furthermore, the normal vector to the body must be known in each cell in order

to properly reflect the particles from the surface. Feiereisen and McDonald (1989)

27

have developed a method useful for defining complex three dimensional geometries

within a regular grid of cubic cells and have applied it to the full simulation of

an ASTV. The isothermal or adiabatic boundary conditions of Woronowicz and

McDonald (1989) can be incorporated into any geometry defined in this manner.

3.2.2 Selecting Collision Partners

With the set of collision candidates identified, it is necessary to select suitable

collision partners. The most common approach has been the "time counter"

approach used in the DSMC method, where pairs of molecules within a cell are

randomly chosen and collided until the asynchronous cell time exceeds the global

simulation time (cf. Bird (1976)). Pryor and Burns (1988) describe a vectorized

implementation of this method but clearly it suffers a strong dependence on the

number of cells in the simulation. At best this method can be parallelized only

across ceils and thus is strongly influenced by statistical fluctuations in the cell

populations. More recently Bird introduced the "no time counter" method (Bird

(1989)) which specifies the number of candidate pairs to be sampled from each cell

and assigns a probability of collision to each pair. However this method is equally

unsuitable for implementation on the Connection Machine because the sample of

candidate pairs is of variable and predetermined size in each cell. Therefore it is

difficult to generate the necessary sample for each cell in a data parallel fashion.

Nanbu (1980) introduces the idea of a probability of collision which he applies

unconditionally to decide on a collision and then on a conditional basis to select

a collision partner. This approach has a better theoretical foundation by virtue of

being derivable from the Boltzmann equation, however it has the drawback of being

an O(N 2) calculation. Ploss (1987) shows how Nanbu's scheme can be implemented

as O(N) and vectorized thus yielding performance comparable to Bird's scheme.

However, both Ploss's and Nanbu's scheme conserve only the mean energy and

momentum of a cell and therefore the total energy and momentum of an individual

colliding pair is allowed to vary. This can lead to greater statistical fluctuations in

a solution, as shown by Bird (1989). In addition, an extension of this method to

28

chemically reacting flows does not exist and the development of such an extension

is questionable.

Baganoff and McDonald (1990) introduce a selection rule based on a collision

probability which allows a fine grained parailelization while conserving energy and

momentum in a collision. In this approach, a probability of collision is computed for

each pair of coUision candidates and collisions are carried out in accordance with this

probability. This probability is applied to individual candidate pairs independent

of the cell as a whole. Consequently, like Ploss's scheme, the selection rule can be

parallelized across particles.

The derivation begins with the general expression for the bimolecular collision

rate but without the usual assumption of thermodynamic equilibrium. By

transforming the equation into the center of mass frame of reference it is possible

to arrive at an expression for the total number of collisions per unit time in a unit

volume. It is then a simple matter to convert this expression into a probability of

a given pair of particles undergoing a collision in a unit volume in unit time. If

the volume under consideration is different from unity then the probability must be

scaled accordingly. For an inverse-power law potential, a, the collision probability

within a unit volume is given by

u

° ° (?) (3.1)

where n is the local number density, S is the number of pairs of collision candidates

or sample size, g is the relative speed of the pair, At is the time step, A is the mean

free path, _ is the mean thermal speed, and the subscript oo refers to free stream

reference conditions. The quantity D(2/a) is given by

D(21o<) (3.9)

McDonald (1990) further extends this expression to account for multiple species.

Typically, a value of S = ,_ is used in a simulation. Fixing S in this manner allows

the calculation of Ps to be made and applied to each collision pair independent of

29

any other collision pair, thus eliminating the data dependencies which would prevent

a data parallel decomposition. Note that the sample size, S, is not dictated by

equation (3.1), but rather is dependent on the particular implementation. Therefore

there is greater freedom in choosing an algorithm for sampling candidate pairs from

the simulation, although care must be taken to ensure the chosen algorithm creates

a sufficiently large sample size such that the probability of selection does not exceed

one for any collisions.

3.2.3 Collision Partner Selection on the Connection Machine

The selection of collision partners on the Connection Machine is exacerbated

by the two scales of granularity inherent to the problem. Once the particles have

been moved and all the boundary conditions enforced, each particle computes its

current cell index. In order to identify collision candidates it is necessary to access

all particles occupying the same cell. This requires sorting the particles in some

manner such that particles with the same cell index can be identified. The sorting

algorithm is described in Chapter 4, the object of the sort is to move the data for

the particles in a cell into neighboring virtual processors thereby allowing access to

ceil information.

What the sort achieves for the algorithm is the perfect dynamic load balancing

one would desire in a cells-to-processors mapping. Since each particle is assigned

to a virtual processor, the amount of processing power and memory allocated to a

given cell in the simulation is directly proportional to the number density of the cell.

Because this value changes on every time step, it becomes necessary to dynamically

reallocate the resources on every time step, and this is accomplished through the

sorting process.

A further requirement of the sort is to change the order of particles within

a cell between time steps. This is necessary because collision candidates are

identified on an "even�odd" basis, i.e. all even numbered particles within a cell

are eligible for collision with their odd numbered neighbor. This proves to be

a very efficient arrangement because, for virtual processer ratios greater than 1,

3O

candidate pairs are never split across physical processors hence communication time

is minimized for the collision. However, it is important that candidate partners

change between time steps otherwise the situation arises where the same partners

coUide repeatedly leading to correlated velocity distributions. This is discussed

more fully in Chapter 4.

Collision partners are selected from the candidate pairs by applying the selection

rule given by equation (3.1). This requires specific knowledge of the cell density

which can be best obtained on the Connection Machine by making use of the

CM_scan functions (Thinking Machines Corporation (1989)).

3.3 Collision Algorithms

Having identified a set of colliding pairs of particles, it then becomes necessary

to perform the collision mechanics. It should be clear at this point that the method

is statistical in nature therefore collision outcomes are determined on a probabilistic

rather than deterministic basis. The purpose is to account for the exchange of energy

between particles in a statistical sense and thus neglect the details of the particle

trajectories. This is consistent with the collision selection rule which reproduces the

correct collision rate for cells in the simulated flow without examining individual

particle trajectories to determine if interaction would be possible.

This section concerns itself with two distinct collision algorithms. The first

of these, the Degree of Freedom Mixing (DFM) collision algorithm, was first

developed by Baganoff (1987) and McDonald and Baganoff (1988) and further

anMyzed by McDonald (1990) and by Fciereisen(1990). The second of these, the

Direction Cosine Decomposition (DCD) collisionalgorithm was firstintroduced by

McDonaid (1990) as a method for vectorizingthe collisionmechanics of hard sphere

interactions.As discussed by McDonald (1990), the DFM algorithm isan attempt

at reducing the operation count in performing collisionsbut at the expense of more

memory references.The alternativeDCD algorithm requires greater computational

effortbut lessmemory referencesand thereforewillrun fasteron high performance

31

machines such as the Cray 2 (which was of concern to McDonald) where processor

speed is much faster than memory speed. On the Connection Machine the choice

of collision algorithm does not have much impact on the overall performance of

the simulation for the simple reason that collisions require only a small fraction

(less than 10%) of the total computational time. The implementation of both

algorithms is described, however the current implementation employs the DCD

algorithm because of its stronger theoretical foundation and greater generality.

3.3.1 Degree of Freedom Mixing Collision Algorithm

The algorithm presented here is that developed by McDonald and Baganoff

(1988) and considers collisions between perfect diatomic molecules of equal mass.

The outcome of a collision of two particles is, for each particle, a new velocity and

internal energy subject to the constraints of conservation of linear momentum and

energy. In this model, rotational energy is accounted for by a rotational velocity

vector r such that

1

Ero_ = 5rn(r. r). (3.3)

For a dlatomic gas, r has two components (corresponding to the two degrees

of freedom in rotation) and the translational velocity u has three components

(corresponding to the three degrees of freedom in translation). Conservation of

energy can then be written as

or

where

Etot = E_at (3.4)

[u,ezl 2 + Irrelf 2 + lu ..I 2 + Ir ..I 2 -

I 2 ! 2 I 2 I 2
lurell + Irrell + lumeanl + Irmean[, (3.5)

ui - uj (3.6)
Urel -- 2

ri - rj (3.7)
rrel -- 2

ui + uj
umean - (3.8)

2

32

ri + rj (3.9)
rmean - 2

and the prime indicates a post-coRision value (these equations correspond to eqs.

16-21 of McDonMd and Baganoff (1988)). Conservation of linear momentum can

be written as

I
Um_an _ U_a n.

Then, by assuming
!

r_Mr_an _ rraea B

the two conservation equations can be combined as a single equation

! 2I- tl 2 + = lu' ll2+ •

(3.10)

(3.11)

(3.12)

Equation (3.12) forms the basis of the collisionalgorithm. One begins by

computing the relativeand mean pre-collisionvelocitycomponents foreach collision

partner. It isimportant to note that for the isotropicscattering of a hard sphere

collision,any post-collisionvalues that satisfy(3.12) are valid. ComputationaUy,

the simplest way to arrive at five values that satisfy (3.12) is to use the same

pre-collisionvalues calculated by eqs. (3.6) and (3.7).By re-ordering these values

in a random fashion and assigning each element a random, equally-probable sign,

one arrivesat a validand completely new post-collisionrelativevelocityvector. The

post-coUision velocityvector for the particlesisnow easilyobtained. For the first

particlethe new relativevelocityis added to the mean velocity and for the second

particle the relativevelocity is subtracted from the mean velocity. By randomly

selectingboth a sign and a permutation there are 5!25 = 3840 possible outcomes

for a collision.

The collisionconserves both energy and linearmomentum however, as with all

probabilisticparticlesimulations,there isno conservation ofthe angular momentum

of the rotors within a collision.Since fluid vorticityis not dependent on particle

angular momentum, it is stillpossible to resolve vorticityin a flow (Woronowicz

and McDonald (1989)).

Of concern with this collision algorithm is the bias introduced in the calculation

of the post-collision state. If the scattering were perfectly isotropic then the angle

33

between the pre- and post-colllsion relative velocity vectors would show a sine

distribution. However, because this algorithm selects the post-colllsion relative

velocity from components of the pre-coUlsion relative velocity, there is a preference

for angles of 0 °, 60 °, 90 °, 120 °, and 180 °. This biasing is most marked when

the algorithm is applied to monatomic particles which have only three degrees of

freedom therefore only 3!23 = 48 possible outcomes for a col]ision. Nonetheless, even

with monatornic particles this collision algorithm reproduces the correct density and

temperature profiles across a normal shock wave and shows deviations from the

correct results only in the actual velocity distribution within the shock (Feiereisen

(1990)).

3.3.2 Implementing the Degree of Freedom Mixing Collision Algorithm

The essential issue that needs to be addressed in the implementation of this

algorithm on the Connection Machine is that of re--ordering the relative velocity

components to arrive at the post--coUision state. On the Connection Machine this

is done by using a permutation vector which is stored in each processor. There are

two permutation vectors available per colliding pair of particles. Which one gets

used is inconsequential, however to maintain statistically random collision outcomes

it is desirable for particles to have different permutation vectors in succeeding time

steps. The standard algorithm for creating random permutations is given by Knuth

(1973) and an adaptation of this is implemented here. The approach taken is to

initialize the particles with random permutations and generate new permutations

by performing random transpositions on the existing permutation. A random

transposition is the operation of arbitrarily switching the order of two randomly

selected elements in the permutation sequence. Consider a permutation p with n

elements. If pj is the jth element of p then transposition of the jth element with

the first element produces the new permutation pt.

Aldous and Dioconis (1986) prove that nlog(n) transpositions of this type are

required to generate a new, statistically uncorrelated permutation. For the present

purposes, at each time step a single random transposition of a particle's permutation

34

vector is performed. It follows that I0 time steps are required before a particle

has a completely new permutation vector. Since individual particles collideless

frequently than every time step, a particle may undergo several transpositions

between collisions.Furthermore, the collisionalgorithm isonly loosely bound to the

randomness of the permutation since randomization of the outcome isenhanced by

random partner selection.For these reasons a singletransposition per time step is

found sufficientto ensure unbiased outcomes. This has been substantiated through

the correct reproduction of normal shock wave density profilesusing just a single

random transposition of the permutation vector.

Because there no inter-processor communication is required one expects this

algorithm to perform well,however it should be pointed out that more work must

be performed in the implementation than what is immediately obvious. This is

because the Connection Machine is a SIMD machine and this algorithm assumes

a MIMD behavior. Specifically,each processor is storing a differentpermutation

vector which is used to dictate which component of the relativevelocity vector is

to be used in computing the collisionoutcome. Because the processors can receive

only a singleinstruction,to process a singleoutcome component requiresconsidering

each of the fivepossibilitiesfor the permutation element with only those processors

storing the element under consideration active. The Connection Machine software

does provide a fastermeans for accessingarray elements specifiedby a per-processor

index however it requires the array to be stored in a "sideways" fashion to allow

parallelaccess to the bits of the array. Because this algorithm requires only one

parallelaccess per element of the array,the overhead in converting the array to this

sideways storage overcomes the advantage of the faster access and this feature of

the software isnot employed.

3.3.3 Direction Cosine Decomposition Collision Algorithm

The Direction Cosine Decomposition collisionalgorithm was firstintroduced by

McDonald (1990) for treating hard sphere elasticcollisionsin a vectorized manner

which can be ei_clentlyextended to inelasticcollisions.Elastic and inelastichere

35 " "

refer to the kind of energy exchange allowed in the collision. Elastic collisions allow

energy exchange only between translational degrees of freedom whereas inelastic

collisions allow energy exchange between translational and internal degrees of

freedom. This section considers just the algorithm for elastic coUisions and defers

the treatment of inelastic collisions to the following section.

Hard sphere interactions are characterized by isotropic scattering. This means

that in a two dimensional scattering process (see figure 3.2) the post-collision

relative velocity vector, g_ is uniformly distributed on a circle and in three

dimensions the distribution is uniform over a sphere. As has been shown by Bird

(1980, 1983), isotropic scattering can still be used in simulating other interaction

potentials because the scattering angle distribution does not have any observable

effects on the solution of gas dynamic problems. This leads to a simplified model

for treating inverse power law potentials, the "variable hard sphere" (VHS) model

first introduced by Bird (1980). This model combines the hard sphere scattering

law with a variable cross section which, in the SPS method, is simulated by using

the the selection rule given by equation (3.1).

As discussed above, the isotropic scattering of two colliding particles requires

specifying a post-collision relative velocity vector sampled from a distribution of

vectors which is uniform over a sphere. For an elastic collision the magnitude of

the relative velocity vector must remain constant in order to satisfy conservation of

momentum and energy. Therefore if 9 is the relative speed, then the post-collision

relative velocity g_ is given by

g' = gn (3.13)

where n is the direction cosine vector. In three dimensions n has three components,

nz,n_, and nz, and requires two angles, X and e, to specify completely. The angle

X is the scattering angle in the scattering plane and the angle _ just specifies the

orientation of the scattering plane (see figure 3.2). Clearly e must be uniformly

distributed in the range [0, 2_'] and may be selected as 21rR1 where R1 is a uniformly

distributed random fraction in the range [0,1]. The scattering angle X must be in

the range [0, _r] and distributed such that nz is uniform over [-1,1]. Since nz = cosx

36

SS SSS |

g

Figure 8.2 Two dimensional scattering process involving hard spheres. This is equivalent to the
three dimensional process viewed in the scattering plane.

we must have cosx= 2R2 - 1 where R2 is another random fraction. Therefore a

valid direction cosine vector can be determined by selecting

e -- 21rR 1

cosx = 2R2-1

sinx = _1 - COS2X (3.14)

and then computing

n z --COSX

n_ = sinxcose

nz = sinxsine. (3.15)

The DCD algorithm differs from standard isotropic scattering collision algo-

rithms in its treatment of (3.14) and (3.15). In the standard approach (cf. Bird

(1976)), equations (3.14) and (3.15) are computed directly for each collision thus

allowing essentially an infinite number of different possibilities for the direction

37

cosine vector. However, in the DCD approach a fixed number of direction cosine

vectors are calculated once and stored in a table during the initialization stage of

the simulation. This corresponds to discretizing the sphere over which direction

cosine vectors are distributed; the granularity of the discretization is controlled

by the number of entries generated in the table. When a collision is performed a

vector is chosen randomly from the table and used in (3.13) to compute the collision

outcome.

3.3.4 Extension to Inelastic Collisions

The term inelastic collision is used to mean that translational energy is not

necessarily conserved over the collision and does not imply any loss in total

energy. Any change in translational energy is accounted for by a corresponding

change in internal energy which in this work includes energy in both rotation

and vibration. Models for treating inelastic collisions are of two types: impulsive

model_, which attempt to incorporate the inelasticity directly into the collision

dynamics, and phenornenological models, which account for inelasticity as a

relaxation phenomenom and retain the hard sphere collision dynamics.

Impulsive models suitable for a particle simulation include the 'rough-sphere'

model (Bird 1970) and the 'loaded-sphere' model (Melville 1972). Neither of these

models is completely satisfactory, both being excessively artificial. Bird's rough

sphere model inadequately represents diatomic molecules as having three rotational

degrees of freedom rather than two. Melville's loaded sphere model is restricted to

'hard' interactions with no control over the effective relaxation time. More advanced

impulsive models exist but these are generally excessively demanding of computing

time and unsuitable for a particle simulation.

The limitations of impulsive models has led to almost exclusive use of phe-

nomenological models for particle simulations. Of these the most widely employed is

the Borgnakke--Larsen model (Borgnakke and Larsen (1975)). The model requires

the specification of a fraction _b of collisions to be treated as fully inelastic and

the remaining fraction 1 - _b as completely elastic. Elastic collisions are treated

38 _

in a manner similar to that presented in the previous section. Inelastic collisions

are treated by assuming a diffusion of energy between the colliding particles and

an equilibrium gas. More specifically, the fraction of the total collision energy

which belongs as relative-translational energy after the collision is determined by

sampling from the corresponding distribution for this fraction in an equilibrium gas.

Therefore a gas out of thermal equilibrium will be driven to an equilibrium state

but in a manner that satisfies detailed balance.

The basis of the Borgnakke-Larsen model lies in the application of the

appropriate distribution for determining the post-coliislon energy balance. The

appropriate distribution is just the equilibrium distribution and can be derived

analytically. Begin with the equilibrium relative speed distribution for colliding

pairs (cf. Bird (1976))

Fc_l(g)dg e< gl-4/a g2 ezp(_ ___Tg2)dg (3.16)

where a is the exponent in the inverse-power law potential, m* is the reduced

mass for the colliding particles, and the superscript on F indicates equilibrium.

Introducing a non-dimensionalized relative energy defined by

erel = kT

the distribution (3.16) can be written as a function of relative energy so

(3.17)

o 1-2/a , ,,
Fcoll(erel)derel o_ ere I ezpL-erel Jaere l

The non-dimensionalized total collision energy, ecoll, is just given by

(3.1s)

Now define .T" as the fraction

ecou -- ere 1 + eint. (3.19)

_- = _e___k/
ecoll

erel

erel + eint

39

(3.20)

The equilibrium distribution for .7" can be obtained from (3.18) by introducing the

distribution function for the total internal energy in the collision. The distribution

function for the internal energy of a single molecule is given by (Hinshelwood (1940))

,(¢,12- (3.21)F°(ei,1)dei,1 oc i,l 1)dei,1

where _i,1 -- Ei,1/kT and _i is the internal degrees of freedom. The total internal

energy in the collision is simply Ein t -- El, 1 + Ei, 2. The distribution function

for the total internal energy may be obtained by considering the joint probability

distribution fora particular value Ei,1 of internal energy in molecule 1 and Ei,2 =

Ein t - El, 1 in molecule 2. Integrating for all values of Ei, 1 up to Ein t gives

_<¢,>-1 i.t (3.22)

where < _i > = (_i,1 +_i,2)/2 is the mean number of internal degrees of freedom. The

product of (3.18) and (3.22) gives the joint probability of a collision with relative

translational energy _rel and internal energy _int. Using (3.22) to eliminate ein t

from the result and noting that ecolI is constant then gives

1-2/a,
F° (erel,%oll)derel oc ere i (ecoll -- eret)<">-lderel.

"17___ jr e_r.d. writeDy suosu_uung = one may
_¢oII

(3.23)

F°(_')d.F" cx _'l-21a(1 - _)<_,>-lda_ (3.24)

which is the desired result. At each collision, a post-collision value EIrel is

determined by sampling from this distribution and computing

I
Ere I = YcEcol I. (3.25)

The relative speed 91 = _/2Elret/m * can then be decomposed into velocity& using

the algorithm of the previous section. The remaining internal energy is divided

between the two particles according to the distribution (Bird (1980))

40

where

T-(¢,,1/2-1)(1 _ g)(¢,,_/2-1)] (3.26)

g

El,1

El,tot

E_,I

El, 1 + El, 2
(3.27)

and where (i,1 and (i,2 are the equivalent number of internal degrees of freedom for

molecule 1 and molecule 2 respectively.

Some points need to be noted in the algorithm thus far. Firstly, the sampling

from distributions proceeds by the acceptance--rejection method therefore there is

no need to know the constants of proportionality in the distributions. A rigorous but

clear derivation of these distributions along with the constants of proportionality

may be found in McDonald (1990) and the above is meant only as an outline

of the origin of the model. Secondly, it should be noted that implicit in (3.24)

and (3.26) is a temperature dependence. This arises in the determination of the

degrees of freedom, < (i > in (3.24) and (i,1 and _i,2 in (3.26). Since it is

unfeasible to determine the macroscopic local temperature for use in determining

these parameters, it becomes necessary to introduce a collision temperature Tcoll

defined from the relative translational energy as

Ere! (3.28)
Tc l=

This temperature can then be used to determine the degrees of freedom in the

collision. Even when averaged over many collisions, (3.28) is not statistically

equivalent to the macroscopic local temperature, however it is a good approximation

and therefore a valid alternative.

41

It is important to realize that the "degrees of freedom" used in the model are

based on a mathematical concept and do not reflect the physics being represented.

The quantum-mechanical model for a molecule allows only an integer number

of degrees of freedom but with partial excitation. The Borgnakke-Larsen model

replaces this concept with one of fully excited Factional degrees of freedom, or

using the terminology of McDonald (1990), equivalent degrees of freedom. This is

not an important distinction when considering just rotational energy, which may

be assumed to always be fully excited and therefore have two degrees of freedom.

However no such assumption can be made with vibration which has a much higher

characteristic temperature. Using the perfect harmonic oscillator model, the specific

energy in vibration, Crib, is given by (Vincenti an Kruger (1965))

ROrib (3.29)
evib= ezp(Orib/T) _ 1

where R is the gas constant defined by R = k/m, T is the local equilibrium

temperature, and Ovib is the characteristic temperature for vibration. This last

is defined by

hv

O_'ib -- T (3.30)

where h is Planck's constant, v is the classical frequency of vibration for the

osciUator, and k is Boltzmann's constant. The number of equivalent degrees of

freedom is determined by assuming a specific energy of ½RT for every fully excited

degree of freedom, therefore

erib (3.31)
_rib = ½RT"

The rate of relaxation of internal modes is specified by the fraction ¢ of collisions

that are to be treated as fully inelastic. Usually, suitable values for ¢ are derived

empirically, although the reciprocal of ¢ can be related to the collision number Z

by (Pullin (1978))

42 _

Zr_ - 8(2 + () 1 (3.32)
5_r ¢

where _ is the number of internal degrees of freedom. Nonetheless it is customary

to define the collision number in a particle simulation strictly as the reciprocal of

and the rest of this work adopts that convention.

It is usually necessary to specify different relaxation rates for rotation and

vibration corresponding to the different collision numbers for these modes. This

requires defining at least two different types of inelastic collision, one which allows

no vibrational energy transfer in the exchange and one other which does allow

vibrational energy exchange. If the second type of inelastic collision allows rotational

exchange as well, in other words all types of energy may be exchanged, then the

definition of collision numbers must be slightly modified as

Z_)

Zv% = Z_{ b. (3.33)

Most implementations of particle simulations which use the Borgnakke-Larsen

model have fixed values for the collision numbers. This is not completely

realistic as it is well known that collision numbers are a function of temperature.

Parker (1959) gives an approximate expression for the rotational collision number

with temperature dependence in agreement with the more rigorous treatment of

Lord] and Mates (1970). These considerations have been incorporated into the

Borgnakke-Larsen model by Pullin (1978). More recently Boyd (1989) included

expressions for a temperature dependent probability for both rotational and

vibrational energy transfer and made a comparison against a model with a fixed

probability for internal energy exchange. Boyds' calculations reveal only a small

effect on the important macroscopic flow quantities although most likely this is due

to the type of flow considered. Chapter 7 presents calculations for a double shock

flow where a temperature dependent exchange probability is crucial for reproducing

the experimentally observed behavior.

43

The primary disadvantage of the Borgnakke-Larsen method is the excessive

computational cost required in sampling from complex distributions defined analyt-

ically like (3.24) and (3.26). There is also some some question to the validity of the

non-physical concept of equivalent degrees of freedom and certainly there is question

with extending the method to more complex vibrational representations than the

harmonic oscillator. These disadvantages are overcome in the model proposed by

McDonald (1990). McDonald uses a Borgnakke--Larsen representation for rotational

energy which is accurately modelled as fully excited with two degrees of freedom.

However vibration is represented by a discrete distribution corresponding to the

quantum states such that it is possible to use an uneven spacing between energy

levels to model an anharmonic oscillator, although in the work of McDonald and in

the present work the harmonic oscillator model is retained.

The use of the Borgnakke-Larsen model for strictly a two degree of freedom

system leads to a greatly simplified treatment of rotationatly inelastic collisions.

For rotational]y inelastic collisions _i,1 = _i,2 -" 2 and therefore all temperature

dependence is eliminated in (3.24). Consequently, the distribution for .7" is the

same everywhere in the flow and can be pre-computed and stored in a table for

easy access. The post-collision energy balance is determined by randomly selecting

an entry from the table and using it in (3.25). The division of total rotational energy

between the two molecules is also greatly simplified since the distribution function

(3.26) which specifies the division reduces to a uniform distribution in the range

[0,1] for this case. Clearly there is a great computational advantage to be gained by

restricting use of the Borgnakke--Larsen model to only translation-rotation energy

exchanges.

A completely new approach is taken for collisions involving vibrational energy

exchange. It is noted that both rotation and vibration are two degree of

freedom systems, the difference being that rotation can be accurately modelled

by a continuous Boltzmann distribution whereas vibration requires a discrete

distribution. The discretization relates to the quantization of the energy levels

which for a harmonic oscillator is given by

44 "

1

Evib, i = (i + 2)bY i = 0,1,2,... (3.34)

To arrive at a post-collision vibrational state is then simply a matter of discretizing

a continuous Boltzmann distribution at the appropriate temperature. Such a

distribution is available from the rotational energy. Using the rotational energy

of the colliding particles as the sample guarantees the correct temperature since the

particles are representative of the local conditions, however attention must be given

to ensuring statistical independence between the energy modes. The post-colllsion

vibrational state may be obtained by truncating Erot as

, | Era | (3.35)
qvib -- LAEt, ibJ

where qvibl is the post-collision quantum number for the vibrational state of

the molecule and AEr& - hv is the spacing between quantized energy levels.

This equation assumes equally spaced energy levels consistent with the harmonic

oscillator model however it can be easily modified to accommodate the arbitrarily

spaced energy levels of an anharmouic model.

McDonald suggests an iterative procedure for applying (3.35) to ensure the

necessary statistical independence is maintained. An iteration consists of first using

(3.35) with the molecule's own rotational energy to determine the vibrational state,

then determining the new rotational state using the remaining collision energy in the

restricted Borgnakke-Larsen model. Less than three iterations are found sufficient

for convergence even in highly non--equillbrium situations.

3.3.5 Collisions on the Connection Machine

In this section we discuss the implementation of a general collision algorithm

on the Connection Machine. The algorithm to be implemented is the direction

cosine decomposition algorithm using the McDonald model for internal energy.

This combination is preferred over the degree of freedom mixing collision algorithm

because of its greater generality and stronger theoretical foundation. These

45

attributes become more important when considering the generalization of the

implementation to include multiple species of reacting gases, a situation where

the degree of freedom mixing algorithm has some serious limitations (McDonald

(1990)).

The application of the necessary equations is straightforward and need not be

discussed here. The issue which must be addressed is the storing of the necessary

tables. At least two tables need to be stored to implement this algorithm, one for the

three components of the direction cosine vectors and another for the distribution of

the fraction .7" of post-collision relative translational energy to total collision energy.

For multiple species there must be a separate table of this fraction for each collision

class, but for a single specie there is only one. For the single specie case there are

then three table values to be obtained if the collision is elastic with a fourth value

necessary if the coUision is inelastic. Two alternatives exist for storing these tables:

they can be stored in distinct VP sets or they can be stored in the same VP set as

the particles. The first alternative utilizes the minimum amount of storage however

it demands the use of the router to access the table entries. This is an undesirable

situation because the communication time becomes excessive. A significant fraction

of all the particles undergo collision on every time step and if their representative

processors are all required to get information from random locations in a relatively

small VP set there will be serious router contention and this should be avoided.

The second alternative is the better one to use. Here the two tables are made

of equal length and distributed amongst the processors representing the particles.

Storage requirements can be reduced by having each processor store only half of

a table entry. In other words, if there are four values to be stored in a table

entry then the first two are stored in an even-addressed processor and the last

two are stored in the succeeding odd processor. Since collision pairs are created

as even-with--odd this guarantees a full table entry is available for a collision with

only NEWS communication required for access.

It is still necessary to ensure each colliding pair is provided with a random table

entry. The motion of particles through the simulation space leads to processors

representing different particles over the course of a calculation, therefore it can

46

be argued that the colliding pair represented by two processors changes between

time steps and to any particular pair the table entry will effectively be random.

However it is undesirable for the same collision dynamics to occur repeatedly in

the same region of the flow. Once steady state has been reached, the number

densities of the cells remain relatively constant and the particles in a given cell

will tend to be represented by the S_e group of processors. :Therefore if the table

entries stored by the processors remain unchanged over the course of the simulation,

then the collision dynamics performed in a cell will tend to be repeated leading to

unwanted statistical dependencies between time steps. This problem is relieved

by shifting the table entries "upwind n on every time step, therefore processor Pk

gets the table v_ues from processor Pk+2 and again only NEWS communication is

employed. Upwind here is in the direction of decreasing NEWS address. Since the

particles are sorted such that all the particles in a cell occupy consecutive NEWS

addresses, and since the ceils are mapped to one dimension in row major order, it

follows that the processors with the higher addresses will represent particles further

downstream for a given row of ceils. Of course by this definition upwind for the

processor representing the first particle in a row of ceils will indicate the processor

representing the last particle in the row below it. This is stiU acceptable for our

purposes.

3.4 Sampling Macroscopic Quantities

The grid of cells used to identify collision candidates serves also in sampling

macroscopic quantities from the flow field. These quantities are collected in each

cell from the distribution of particles within that cell. Once steady state has been

Teached it is possible to time average the macroscopic quantities of interest, thereby

reducing the statistical uncertainty of just a single measurement. Because there

is some corrdation in macroscopic quantities between successive time steps, the

statistical independence of samples of a given quantity can be improved if they are

collected less frequently. Since sampling of the solution can take up a significant

47

fraction of the time step when many quantities are to be measured, there can be a

performance advantage in sampling less frequently than every time step.

The process of sampling the solution is straightforward but can be expensive

because of communication time. A separate VP set, which wiU be referred to as

the Jampling VP Jet, is created to store the running averages. There is one virtual

processor in the sampling VP set for every ceU in the simulation. Little calculation

is necessary to create the samples, most often only a sum of all the values in a ceU

is required, although averages of second moments of the velocity distribution (e.g.

u 2 or v 2) also require some multiplication. The time to perform these calculations

is always small compared to the time required to send the values to their storage

locations.

Two alternatives exist for sending the sampled results to the sampling VP set.

The simplest approach is to send each value to be averaged directly to the sampling

VP set using the CM_send_with_add instruction (Thinking Machines Corporation

(1989)) such that the sampling VP set receives the sum of messages sent to the same

destination. The Connection Machine instruction set (PARIS) includes a complete

set of sen4_with type instructions that allow the combination of multiple messages

sent to the same location. Some of the calculation required by these instructions gets

carried out while the messages are en route to their receiving processor. The router

is capable of detecting messages being sent to the same location and combining

them at this time. The final calculation is carried out by the receiving processor

which combines (in this case adds) the messages received with the value currently

stored at the messages' destination address.

Using the CM_send_with_add as described saves on the cost of summing

values across processors with scan instructions. However, because the send_with

instruction has to be repeated once for every sampled quantity, the overhead in

initiating the communication is repeated unnecessarily. More importantly, the

communication is initiated from the VP set storing the particle data. The VP ratio

of this VP set is very high and it is best to consider initiating the communications

from the sampling VP set which has a much lower VP ratio. Therefore a better

alternative is to use scan instructions to compute the desired averages in the ceUs

48

such that one processor for each cell stores all the quantities to be sent to the

sampling VP set. These processors then send their self-address to the appropriate

processors in the sampling VP set. Those processors in the sampling VP set which

received an address can then get the sampled quantities in a single communications

event. The schematic for the communications pattern is iUustrated in figure 3.3.

The advantage of this approach is that the bulk of the communications is initiated

from the sampling VP set in a single instruction. This amortizes the overhead in

initiating the communication and allows it to be carried out at the VP ratio of the

sampling VP set thus proceeding much faster.

49

CELL

CELL

CELL

CELL

0

2

PARTICLES

0

1

2

3

4

5

6

7

8

9

10

SAMPLING

VP SET

0

1

2

3

CELL 0

CELL 1

CELL 2

CELL 3

Figure 3.8 Schematic of communications pattern for sampling macroscopic quantities from the

simulation. Vertical lines with a single arrowhead are scan operations. Lines between VP sets

represent genera] router communication. One arrowhead is used for a send instruction and two

arrowheads are used for a set instruction.

50

Chapter 4

Sorting Algorithms

On the Connection Machine

The selection of collision candidates in a particle simulation requires identifying

particles occupying the same cell in physical space. In general this will involve a

sorting operation which can take up a significant fraction of the computation. The

amount of sorting required to some degree depends on the collision selection rule

and its application to the candidate collision pairs. Baganoff and McDonald (1990)

classify the application of the selection rule according to the role given to the sample

of candidate pairs taken from a cell. If the sample size is left unspecified, such that

one has the freedom of using whatever algorithm is most convenient for sampling

candidate pairs from a cell, then the selection probability will be unconstrained

and may exceed unity. However, because there is greater freedom allowed in

the sampling of candidate pairs, the selection rule applied in this manner can be

implemented with greater ease on different computer architectures. For this reason

it is termed the natural 5ample size selection rule. The greater freedom afforded in

choosing an algorithm for sampling candidate pairs is especially important on the

Connection Machine because this is one of the algorithms which cannot be directly

51

translated from vectorizable to data parallel form.

The alternative application of a selection rule chooses a sample size which always

ensures that the probability of selection is less than unity. The sample size is

explicitly specified for each cell and therefore is coupled to the application of the

selection rule. Consequently, there is very little freedom in the choice of algorithm

for sampling candidate pairs from a cell, typically the particles must be fully sorted

by order of their cell so that the correct number of pairs can be created in each cell.

McDonald and Baganoff (1990) refer to this manner of application of the selection

rule as the constrained probability selection rule. The first section of this chapter

discusses in more detail the sorting used in implementing both the constrained

probability and the natural sample size selection rules on sequential and vector

computers. The remainder of the chapter then deals with the sorting necessary to

implement the natural sample size selection rule on the Connection Machine.

4.1 Sorting for Particle Simulations on Sequential or Vector

Machines

The firstsort which will be discussed here is for the DSMC method which

employs the constrained probability selection rule. In the DSMC method the

particleindices are sorted such such that allthe particlesin a cellcan be accessed

through a continuous set of pointers in a cross-reference array. Then by knowing

the celldensity and the starting index in the cross-referencearray for particlesin

the cell,one can identifythe restof the particlesin the cell.Historicallythis type

of a sorting operation has been required with the DSMC method because the time

counter method for selectionof collisionpartners employs an undetermined number

of collisioncandidate pairs,therefore the sample sizeis tightly coupled with the

process of selectingcollidingpairs to the degree that candidate pairs are created as

part of the selectionprocess. However, with the constrained probability selection

rule, or the no time counter (NTC) method as it is referred to by Bird i1989),

the coupling of the sample size to the selection process is somewhat looser in that

the sample size is specified before carrying out the selection process. Therefore it

52

would not be unreasonableto implement a particle simulation with the kind of sort

employed by McDonald (1990) but using the constrained probability selection rule.

Of course the scheme would fail if ever the sample size specified by the selection

rule was greater than the sample size collected by the algorithm.

The sort operation here scales as O(N), where N is the number of particles,

rather than the O(N log N) usually associated with sorting. The reason behind

this is that the range of the elements to be sorted is known ahead of time so it

is possible to create an array in which to sum up the number of occurrences of

each element and use this to sort. More specifically, one can go through the table

of particles once to create an array which stores the cell densities. Then, simply

by computing the running sum of the cell densities one can create another array

which stores a starting index for each ceU. Finally, one goes through the table of

particles a second time and adds the occurrence of each cell to the starting index

for the cell and thus creates the rank for a particle. This sort cannot be fully

vectorized although Boyd (1990) shows how it can be partially vectorized. Figure

4.1 is a schematic of the sorting process as performed by Boyd. The unvectorizable

elements of this algorithm are the calculation of the ceU densities and the counting

of previous cell occurrences in the table of particles. The term "cell occurrence" is

used to mean, for a particular particle, how many other particles before it in the

table occupy the same cell. In other words it is an enumeration of the particles

in a cell. If this enumeration is available in a separate array then the last part of

the algorithm, which is the creation of the rank of each partide in the table and

is called the "cross-reference array" by Bird (1976), can be vectorized. Therefore

the algorithm proceeds as follows. First, in one pass through the table of particles,

the particles in each cell are enumerated and the final count for each cell becomes

the cell density. In the figure, the state of the cell density array is shown for every

step of the enumeration. The next step in the algorithm involves computing an

array of starting indices for each cell simply by carrying out the running sum of the

cell densities. Finally, the rank of each particle is computed by adding a particle's

enumeration to the starting index for its cell. The first step of this algorithm cannot

be vectorized because it is impossible to ensure that two particles in a vector do not

53

also occupy the same cell. Note that the collision candidate matching algorithm of

McDonald (1990) runs into the same problem in vectorization, and it will be shown

that the same considerations that allow McDonald to fully vectorize his algorithm

can be applied to the DSMC sort to fully vectorize it as well.

With the selection rule of Baganoff and McDonald (1990) the number of collision

candidate pairs is fixed as a function of the ceU density, typically one creates n/2

pairs in a cell where n is the cell density. Therefore on a sequen_ti_ machine there

is no need to order the particles before creating pairs, one can simply go directly to

creating a known number of pairs of collision candidates to be used in the collision

routine. This is accomplished by going through the table of particles once and

keeping track of every occurrence of a cell in a separate array. The separate array is

a mapping in memory of the cells in physical space, and is referred to as the "space

map" (McDonald (1990)). The space map will store either the index of a particle

or a zero. Figure 4.2 is a schematic of this collision candidate pairing algorithm.

One performs a single pass through the table of particles, and for each particle

checks the appropriate element in the space map to see if another unpaired particle

is in the same cell. If this is the case one creates a pair and zeroes the dement

in the space map. Otherwise the particle's index is stored in the space map as an

unpaired particle. In figure 4.2 the state of the space map is shown for each step in

the pairing process. Therefore it is possible to see how consideration of each particle

in the table changes the state of the space map. Paired particle indices are stored at

the time they are created in two arrays which are later used in the collision routine.

In the strictest sense this algorithm cannot be fully vectorized, however by

allowing a very small and acceptable error McDonald (1990) is able to achieve full

vectorization. The error which arises is the same error which prevents vectorization

of the sorting algorithm used in the DSMC method, and occurs when two or more

particles in a vector occupy the same cell. In this algorithm such a situation has

two possible outcomes depending on the current state of the call. If at the time the

vector is being processed there are no unpaired particles in the cen, in other words

the corresponding entry in the space map is zero, then only one of these particles

will have their index written into the space map and the other one will essentially

54

PARTICLE

\

1 I

2 0

3 2

4 0

5 1

6 I

7 2

CELL

J

CELL

0

I

2

ii i

!

1 iI
I

I I

L .J 1
I I
I i
I I

2

I

r
I
I
I

I
I
I

2

CELL DENSITY

\
"- 2

3 ii_ 3

!

•r 2 2
I

1 1 1 2 2 3 2

1 2 3 4 5 6 7

ENUMERATION

PARTICLE

INITIAL STATE
(I)

ENUMERATION OF PARTICLES

(ll)

CELL

0 0

1 2

2 5

RANK PARTICLE

\ J
1 2

2 4

3 1

4 5

5 6

6 3

7 7

BASE INDEX

ARRAY

(IV)

CROSS-REFERENCE

ARRAY

(V)

Figure 4.1 Schematic ofstepsin the DSMC sortalgorithm.

55 "'

PARTICLE CELL

', 7
1 l CELL

2 0 0

3 2 1

4 0 2

5 1

6 1

7 2

INITIAL STATE
(I)

SPACE MAP

INITIAL VALUE
/

0 iii-i_. 2 --ii_

0 1

0 I_ 3

PAIRS

2 4

1 5

3 7

-[
I I
I I
I I
! I

hii.i-

II •

6iiilI_

iiiiwgmil

CREATION OF CANDIDATE PAIRS
(11)

Figure 4.2 Schematic of collision candidate pairing algorithm used in the vectorized Stanford

particle simulation method. The end result is a llst of candidate pairs of colliding particles.

be ignored as a candidate coUision partner. This is not an error since the number of

pairs created in a cell is counted and used in computing the probability of selection.

However, if at the time the vector is processed there does exist an unpaired particle

in the cell with its index stored in the space map, then this particle wiU get paired

with both particles in the vector. This can lead to an implementation-dependent

outcome for the collision of these particles. The coUisions are carried out in a

vectorized fashion, therefore if the same particle collides twice in a vector the

outcome is unpredictable and very likely not to conserve momentum and energy.

However, as indicated by McDonald (1990), the probability of the above occurrence

56

is very low because not only is it necessary for the two particles to have been in the

same vector during the pairing process, but also the two pairs must be accepted for

collision before an error is introduced. Furthermore, since the effect of this error is

small the situation is quite acceptable.

It is possible in some degree to quantify the heuristic argument given above by

deriving the probability of two or more particles in a vector occupying the same

cell. To do this we must make the following assumptions:

(i) the cell populations are all identical.

(ii) particle indices are independent of the particle locations, therefore the

indices can be thought of as randomly distributed amongst the particles.

The second of these assumptions is generally true, however the first is true only in

the DSMC method where cell volumes are chosen to give a uniform cell population

throughout the flow domain. For the cubic cells of unit width employed with the

SPS method it is not possible to expect uniform cell populations, nonetheless one

can proceed assuming (i) is true and then see how the result is affected when (i)

does not hold.

Given the two assumptions above, one can find for any particle in the flow field

the probability p that it occupies a particularcellcj (j = 1,...,Ctot) as

p= llC_ot (4.1)

where Ctot is the total number of cells in the flow field. Conversely, the probability

q that this particle not occupy a particular cell cj is given by

q = 1 - 1/Cta. (4.9.)

Now consider a group of Nrec particles, where Nvec is the number of elements in a

vector (64 for the Cray 2). The probability of k particles in the group occupying

the same cell is given by the binomial distribution

(4.3)

57

where (Ni.,) are the binomial coefficients defined as

= k!(_- k)!"
(4.4)

X-,N,,c
The distribution is normalized so z-.,k=l f(k) = 1. To determine P, the probability

of two or more particles in a vector occupying the same cell, one must evaluate

_t'we c

P--Z s(k)
k=2

= 1 - y(0) - f(1)

= 1- qm.,-a(q + i%,cp).

Substituting q = 1 - p gives

(4.5)

P = 1 - (1 - p)N'"-I(1 + (Nvec - 1)p).

Typically the number of cells Ctot is large so p _'_: 1 and

(4.6)

and (4.6) simplifies to

(1 - p)N..,-1 _ 1- (N,,c - 1)p (4.7)

P _ (_v,,c- 1)2p2
(N,,, - 1)2

(4.8)

Now consider that in a moderate size simulation one may employ 106 particles

and about 5 x 104 cells. The probability of finding two particles in the same cell

in a vector of 64 particles is then P = 1.6 × 10 -6. One pass through the table of

particles requires about 16000 vectors, therefore over 1000 time steps one would

employ 1.6 x 107 vectors and so one could expect 1.6 x 107 x P -_ 25 vectors to have

two or more particles occupying the same cell.

58

The analysis above assumes that all cells have the same population therefore all

particles are equally likely to occupy a particular cell. When the cell populations

are not uniform then randomly chosen particles are more likely to be occupying the

cells with greater population. Conversely, particles are less likely to be occupying

cells with less population, therefore one can remove from consideration those ceils

with less population and employ the result in equation (4.8) but with Gtot adjusted

to reflect the greater weight given to the more populated ceils. In the typical

simulation of the previous paragraph there were an average of 20 particles per cell.

In the actual flow one would probably find some cells with no particles and some

with 150 or more. In the worst case one would assume an average of 100 particles

per cell is significant, therefore with 106 particles there are G_ot = 103 significant

ceils in the flow. Now over 1000 time steps there are 625 vectors which have two or

more particles occupying the same cell. As a worst case this is still an insignificant

amount considering that there are a million particles in the flow and the calculation

has been carried out over a thousand time steps.

It is of interest now to consider what effect there would be in the DSMC method

if the sorting algorithm there ignored the problem of two or more particles in a

vector occupying the same cell. It is clear from the preceding paragraphs that such

an occurrence is rare enough that ignoring it is acceptable so long as the result

of such neglect is not catastrophic. First consider the effect on the calculation of

the cell density. The cell density is the final result of enumerating the occurrences

of a ceil in the table of particles. If two particles in a vector Occupy the same

ceil, then in processing that vector there will be two copies of the current cell

count, each of which will be incremented by one. As a result the computed cell

density will be less than the actual value by one. This is an insignificant error in

view of the statistical nature of the simulation and the rarity of the occurrence as

discussed above. McDonald (1990) allows precisely the same error in computing

the cell density, as is necessary for allowing vectorization. The effect on the actual

enumeration of the cell occurrences follows from this. If two particles in a vector

occupy the same cell then they will both receive the same enumeration. In such a

case, the two particles will receive an equal rank in the table, therefore in creating

59

the cross-reference array the same array element will receive two different values

from the same vector. As a result, one of the particles will be ignored, and the

cross-reference array will have one element left unwritten to. The latter could be

useful as a check for this error. One could initialize the cross-reference array with

an unused value such as -1, therefore any elements left unwritten after the sort will

store this value. Later when the cross-reference array is used for creating candidate

pairs it would be an easy matter not to allow any pairs which include particle -1

as a partner.

On the Connection Machine it is not practical to employ either the DSMC

sorting algorithm or McDonald's pairing algorithm. As discussed above, problems

can arise if two or more particles in a vector also occupy the same cell, and equation

(4.8) gives the probability of such an event occurring. On the Connection Machine

the "vector length" is effectively as great as the active VP set, therefore there is a

"very high probability of two or more particles in a vector occupying the same cell.

This is a situation where the relatively small vector length of the Cray 2 allows

what is in the strictest sense a SISD algorithm to be carried out in a SIMD fashion.

The discussion in section 2.1 explicitly applies to this situation. One could emulate

a smaller vector length N_ec on the Connection Machine by looping through all the

processors in the VP set with only N_ec processors active at a time. However, the

meager performance of individual processors makes such a process very costly, and

simply from a load balancing point of view it would be horribly inefficient regardless

of the speed of individual processors. Consequently, on the Connection Machine

one can virtually rule out as unfeasible any algorithm which requires almost SISD

behavior over a large data set. Fortunately, alternative algorithms can be used and

these are the topic of the remainder of this chapter.

(

4.2 The Radix Sort

The Connection Machine instruction set (PARIS) includes an instruction for

finding the rank for each element in a disordered set of data. This is the

60

CM_rank instruction which is simply a radix sort algorithm written in microcode

and supposedly optimized for performance, ttiUis and Steele (1986) describe this

algorithm for the Connection Machine. Sorting N elements with a maximum value

of Ctot (the greatest value of a cell index in the current context) requires log(Ctot)

passes through the N elements of the data set. Each pass considers a single bit of

the sort key (the cell index in this case) beginning with the least significant bit and

proceeding to the most significant bit. The elements with a zero bit are enumerated

first, and the elements with a one bit are enumerated above these. Therefore if

there are c elements with a zero bit they get assigned distinct integers Yk ranging

from 1 to c. The remaining N - c elements with a one bit then get assigned distinct

integers Yk ranging from c + 1 to N. The values Yk are then used to permute the

elements such that all the elements with a zero bit precede the elements with a one

bit. By proceeding through the log(Ctot) bits of the sort key the set gets ordered.

Figure 4.3 is a schematic for this algorithm. Beginning with the same disordered

data set of figures 4.1 and 4.2, two pairs of enumerations are carried out to sort the

set. In this example the maximum key value is 2, therefore only two bits are required

to represent all the key values. The first pair of enumerations is used to re--order

the particle indices based on the value of the least significant bit in the cell index.

The new order is shown in the figure and is labelled "rank[I]" to indicate it is the

ranking after examining the first bit of the key. The second pair of enumerations

uses the rank[l] values in re-ordering the indices and thus arrives at the rank[2]

result which here is the final result since there are only two bits in the key.

It is worthwhile at this point to note the difference between a "ranking"

algorithm and a "sorting" algorithm. A ranking algorithm returns the "rank" value

for the dements of a set; in other words it returns the position that a particular

element would take if the set were ordered. This is more general than a sorting

algorithm which actually moves the disordered elements of the set into their ordered

locations. Ranking is more efficient than sorting when the data to be ordered is much

larger than the key that determines the ordering. In other words, if the dements

of the disordered set are large, it is more efficient to first rank the elements and

then move them to their ranked positions than to move the elements each time the

61

PARTICLE

\

1

2

3

4

5

6

7

CELL (binary)

/
1 (01)

0 (00)

2 (10)

0 (00)

1 (01)

1 (01)

2 (10)

:o 3>
3> :o
Z -'4 r_

r-- r
m F-

1 2 O0

2 3 10

3 4 O0

4 7 10

5 10l

6 5 O1

7 6 O1

"0
33 3>
3> :0
Z -4

_ m
N) r- r

i'li1 I--

I 2 O0

2 4 O0

3 10I

4 5 O1

5 6 O1

6 3 10

7 7 10

INITIAL STATE

(I)

FIRST ENUMERATION

(11)
SECOND ENUMERATION

(Ill)

Figure 4.8 Schematic of radix sort algorithm for maximum key sise of two bits.

sorting algorithm permutes the key.

On the Connection Machine each re-ordering of the data set requires a general

router communications event in the form of a L3L.send, therefore for the radix sort

presented there must be two enumerations and one "send" per bit of the key. This

;ratio of enumerations to sends can be changed simply by examining more than

one bit before re-ordering. In other words, one can look at two bits of the key

and carry out four distinct enumerations before re-ordering, or one can look at

three bits and carry out eight enumerations before re-ordering and so forth. In

general 2 j enumerations are required to re-order j bits. Therefore for every j bits

in the key there will be 2 j enumerations and one send. On the Connection Machine

62

enumerations are about 14 times faster than sends, therefore the cost of the radix

sort is proportional to (2J + 14)/j which is minimized for j = 3, in other words

re-ordering 3 bits in the key at a time. It is interesting and perhaps surprising that

the elq..rank instruction uses j = 2 and it is possible to write a faster ranking routine

in PARIS by using j = 3. Finally, it is worth noting that the sorting algorithm used

in the DSMC method can be thought of as a special case of a radix sort which

lets j be the maximum number of bits in the key and, because the range of the

key is known precisely, allows the 2J enumerations to be performed in a single pass

through the set as was described in section 4.1.

A final concern for the sorting algorithm is to maintain statistical independence

between samples of collision candidate pairs taken from a cell over succeeding time

steps. As was described in section 3.2.3, collision candidate pairs are identified on

an even/odd basis, therefore the sorting algorithm must allow the order of particles

within a cell to change if statistical independence is to be maintained. With the

radix sorting algorithm a simple mechanism for accomplishing this is to concatenate

a random sequence of bits to the least significant bit of the key, and then sort on this

expanded key. A fixed number of bits are concatenated but their values are random,

therefore sorting on the expanded key will restore the order of particles between cells

while changing the relative ordering within cells. Unfortunately, expanding the key

in this manner introduces additional bits to sort and there is a corresponding penalty

in performance.

The radix sort algorithm as described scales as O(N log(C_ot)), where C_o t =

2kCtot is the size of the expanded key when k bits are concatenated to the cell

index. Each enumeration requires time proportional to N and the number of

enumerations is proportional to log(G_ot). Therefore if this sort algorithm is used

in a particle simulation, the computational time will scale linearly with the number

of particles only if the total number of cells is held fixed. Since the number of

ceils in a simulation typically will be at least an order of magnitude smaller than

the number of particles, the log(C_ot) factor will not have a great effect on the

scaling of the simulation for smaller problems. However it most certainly is a cause

for concern with very large problems and the radix sort is not recommended for a

63

particle simulation other than for its simplicity and robustness.

4.3 Sorting Using Multiple Grids

Section 4.1 discussed in some detail the sorting algorithms used in particle

simulations on sequential or vector machines. Common to all these algorithms is the

representation of physical space by a data structure in memory with an individual

element for each cell of physical space. Such a data structure will be referred to

as a "grid". There is no architectural reason why a grid could not be used on the

Connection Machine for sorting, however the current software does not allow the

kind of communication necessary for effective use of just a single grid. Through the

use of multiple grids this software limitation can be circumvented, and this section

describes a sorting algorithm which uses multiple grids in an effective manner with

the current software. The section ends by describing how sorting on a single grid

could be made effective with the introduction of a new communications instruction.

4.3.1 Algorithm for a Single Grid

To describe how sorting is performed on multiple grids, it is best to begin by

describing how to sort using a single grid. On the Connection Machine the grid is

implemented as a separate VP set with one processor for every dement of the grid.

In the following discussion, the processors representing the grid WIU be identified as

"grid processors" in order to distinguish them from the processors representing the

particles which will be referred to as "particle processors".

The rank of a particle can be determined from the sum of the base index for

its cell and the particle's enumeration within the ceLl. The base index for a cell is

easily obtained on a single grid as the running sum of the cell densities. Figure

4.4 is a schematic for the kind of communication required. Each particle processor

uses the CM_send_with_add instruction to send a value of I to the grid processor for

its cell. This instruction combines multiple messages going to the same destination

by taking their sum, therefore the receiving processor receives only the sum of all

64

PARTICLE CELL

_ CELL DENSITY BASE INDEX

' ' _'X_,, \ _ELL
ol o o
,I T •

5 1 // (scan with add)

6 1
d)

7, 2

INITIAL STATE CREATE CELL CREATE BASE

(I) DENSITY INDEX

(ll) (Ill)

Figure 4.4 Using a single grid to compute the cell density and the cell base index.

the messages sent to it. In this case the grid processors receive the cell density; the

running sum of the cell densities can then be created by using the CM_sctm_with_add

instruction.

Enumerating the particles in a cell is an iterative process, figure 4.5 is a

schematic for this part of the ranking algorithm. Each particle processor now

uses the CM_send_with_overwrite instruction to send its self-address to the grid

processor for its cell. This instruction ensures that one correct message is received

from multiple messages sent to the same destination, which message gets received

is unpredicatable. This is a rather fortunate feature of the instruction since it

provides, at no additional cost, the randomization of particle order within the ceil

which is required by the collision selection rule. Grid processors which receive

messages return, to the particle processors, the current "base index" for the cell and

then increment the base index by one. On the next iteration only those particle

F'

65

PARTICLE CELL RANK

_ PARTICLE°i-t-7 o i-

PARTICLE

/

1

2

3

4

5

6

7

INITIAL STATE

(I)

COMPUTE RANK

USING GRID

(ll)

RETURN RANK

TO PARTICLE

(Ill)

Figure 4.5 Using s single grid to rank the particles.

processors which did not receive a ranking from the grid participate. The process

is repeated until all the particles have been ranked.

4.3.2 Using Multiple Grids

The number of iterationsnecessary to rank the particleswith a singlegrid is

equal to the greatest celldensity in the flow. Since the celldensity can become quite

large the algorithm can be very inefficientand it is necessary to find some way of

reducing the number of iterations. This is accomplished by employing multiple

grids for the enumeration. The multiple grids are implemented in a single VP

set as shown in figure4.6 with the differentlevelsfor a given cellin the multi-grid

occupying neighboring locationsin the VP set.An iterationof the sorting algorithm

employing a multi-grid is depicted in figure4.7. Note that the multi-grid in figure

4.7 is somewhat unusual in that ithas 3 levels.More typicallythe multi-grid will

have a power of 2 number oflevelslikein figure4.6,however in the interestof clarity

66

Figure 4.6
VP set.

LEVEL 0

1

2

3

LEVEL 0

1

2

3

LEVEL 0

1

2

3

CELL 0

CELL 1

CELL 2

Layout of a multi-grid. The different levels for a cell axe neighboring processors in a

only 3 levels were depicted in this figure. A particle processor first randomly selects

a level in the multi-grid, and then uses the CH_send_with_overwrite instruction to

send its self-address to the grid processor for that level in its cell. Note that now

the order of particles within a cell is randomized not only from the unpredictable

nature of the CM_send_with_overwrite instruction but also through the random

selection of a level in the multi-grid. Grid processors which receive messages are

enumerated across the levels, and the enumeration is added to the base index for the

cell to create a ranking. These processors then return the ranking to the particle

processors and update the base index. On the next iteration only those particle

processors which did not receive a ranking from the multi-grid participate.

67

PARTICLE RANK

PARTICLE CELL LEVEL

1 1 0

2 0 2

3 2 0

4 0 1

5 1 1

6 1 2

7 2 0

send with
overwrite

4 0

2 1

1 2

5 3

6 4

3 5

m

ELL 0

CELL 2

RANK PARTICLE

1

ol4
I

3 5

,4 6

- 7

INITIAL STATE COMPUTE RANK

(I) USING MULTI-GRID

(ll)

Figure 4.7 Using a multi-grid to rank the particles.

RETURN RANK

TO PARTICLE

(Ill)

4.3.3 Factors Affecting Performance of the Algorithm

The performance of the algorithm is largely a function of the number of

iterations. With multiple grids the number of iterations no longer is simply equal

to the greatest cell density in the flow. The factors which affect the number of

iterations now include the the number of levels in the multi-grid as well as the

maximum ceil density, A statistical analysis can be carried out to determine how

_hese two parameters relate to the number of iterations. Begin by letting n be the

.cell number density and L be the number of levels in the multi-grid. If levels axe

selected randomly, then a single particle has a probability p - 1/L of being in a

particular level and q = 1 - 1/L of not being in that level. Once ag&in we can make

use of the binomial distribution (equation (4.3)) to find the probability _strlbution

68

for n particles. For n particles we find the probability of k of these occupying the

same level is given by

:(kl- (Q:qn-k
\k/ "

Therefore the probability of there being one or more particles in a level is

(4.3)

e=Zs(k)
k=l

= I- f(o)
1 n

=I-(I-z) .

Consider a particular cell and let no be the number density.

there are n 1 = no - LPo unranked particles remaining in the cell where P0 is just

equation (4.9) evaluated for n = no. After two iterations there are n2 = nl - LP1

unranked particles remaining in the cell where P1 is equation (4.9) evaluated for

n = n 1. In general, after i iterations there are ni = hi-1 -LPi-1 unranked particles

remaining in the cell. Expanding this recursive relation gives

(4.9)

After one iteration

n i : n o -- L(PO -F P1 "4-P2 +'" "4-Pi-1)"

The algorithm is converged when ni = 0 or,

(4.10)

I

E Pi = no/L. (4.11)
i=0

Equation (4.11) substantiates what one may have guessed intuitively, namely that

increasing the number of levels reduces the number of iterations. We can recover

our result for a single level from (4.11) by setting L = 1 so from (4.9) P = 1 and

we find, as before, that no iterations are required to converge. It is interesting also

to determine how many levels would be required to converge in a single iteration.

This can be done by setting P0 equal to no/L and solving for L. Doing this results

in L = oo, which of course must be the case since the algorithm chooses levels

69

randomly and it is impossible to guarantee with a finite number of levels that the

same level is not chosen for two different particles. In general one can use (4.11)

to predict how many iterations are required for convergence given some number of

levels and particles to be ranked.

In practice it is found that reducing the number of iterations improves

performance only to a point after which there is a drop in performance. This is

due to the communications cost also being a function of the number of levels. For

a greater number of levels, the VP set which stores the multi-grld becomes larger,

therefore the cost of sending the rank value from the multi-grid to the particle

processors increases. One could consider initiating all the communication from

the particle processors, then the communication cost would be independent of the

number of levels in the multi-grid. There are two reasons why that is not a profitable

proposition. First, it entails the use of the CM..get instruction which has about

double the overhead of CM_send and also uses an unpredictable amount of temporary

storage which makes it very difficult to employ in any situation where memory is

at a premium. This is quite a serious limitation especially in the current context

where it is desired to use all the available temporary storage in order to create the

largest multi-grid possible in order to minimize the number of iterations necessary

to rank the particles. The second disadvantage in initiating all the communication

from the particle processors is that it results in greater network traffic and greater

router contention. Router contention has a great impact on the performance of

this algorithm. After each iteration the number of particles left to rank decreases

substantially, leading in the next iteration to a great reduction in router contention

and consequently in the time to complete the iteration. If the grid processors are

used to send the rank values back to the particle processors, then for that part of

the iteration the network traffic is mJnimlzed since there are no redundant messages

in the network. On the other hand if the particle processors are used to get the rank

values from the multi-grid, then there must be a message sent for every particle

processor which is active for the iteration. Not only does this lead to greater network

tra_c, it also creates more router node contention from grid processors which have

two or more particle processors getting a value from them.

70

It is found for most situations that a multi-grid with twice as many virtual

processors as there are particles in the simulation gives the best performance. The

performance of the algorithm depends largely on the density distribution in the flow.

A uniform flow density is the optimum condition for applying this algorithm. Such

a situation only exists near the start of the simulation and the multi-grid sorting

algorithm is found to take about half the time of the radix sort. Once the fiow has

reached steady state the density distribution is far from uniform, and the multi-grid

sorting algorithm takes about 75_ of the time of the radix sort. Fortunately, even

in the most severe conditions density will maintain bounded values and sorting

with a multi-grid is suitable for most flows. Consider that the stagnation region

in a blunt body flow represents the most severe conditions one would expect to

encounter in the simulation of an external flow. For diatomic molecules the jump

in density across a shock wave is limited to six times the free stream density. There

can be further increase in density within the stagnation region, most noticeably

for an isothermal surface with a wall temperature significantly lower than the gas

temperature in the stagnation region. In such a situation the wall tends to cool the

gas and leads to a density gradient through the thermal boundary layer. However,

even such a condition rarely leads to a density greater than ten times the free

stream, and this is restricted to a thin layer of cells near the body. Consequently

one can be fairly certain never to encounter cell densities greater than ten times

the free stream value. That such a reasonable upper bound exists is important for

guaranteeing the generality of this algorithm.

The above discussion is restricted to flow simulations without chemical reac-

tions. When chemistry is introduced there are more degrees of freedom available

for energy dissipation and the theoretical limit on the density jump across a shock

wave becomes greater than six. It is conceivable then for the stagnation region to

contain a large fraction of the particles in the flow. In such a situation it may prove

profitable to sort the particles in two distinct sets. One could define a subspace

of the physical domain to include the stagnation region, and create a multi-grid

for this subspace with a much greater number of levels than would be possible for

the full physical domain. The particles in this subspace would get ranked with this

multi-grid, then one would create the multi-grid for the full physical domain and

rank the rest of the particles.

4.3.4 Using a Single Grid Effectively

To use a single grid effectively for sorting the particles, it is necessary to

introduce a new communications instruction. The instruction one would require

would make the receiving processor simulate a stack or a queue. In other words,

when multiple messages are sent to the same processor, the processor receives all the

messages saving them in its own memory. It is possible that an instruction similar

to this be made available in the near future, therefore it is worthwhile discussing

how one could make use of it. Clearly with such an instruction one would only

create a single grid, and begin as above by determining the density and base index

for each cell. Next, _11 the particle processors would use this instruction to send

their self address to the appropriate grid processor. The grid processors would then

return to each particle processor the rank value, which would be the sum of the base

index and the enumeration within the cell. The number of iterations required would

be equal to the maximum cell density, nmaz, divided by the maximum number of

messages which could be received by the grid processors.

The communications related problem one encounters with this algorithm is in

returning the rank values from the grid processors to the particle processors. In

this algorithm the grid processors have to perform r_maz send operations to return

the rank values. Since these send operations are initiated from the grid VP set

they are much faster than send operations initiated from the particle processors VP

set. The concern here however is in load balancing. If the density distribution is

perfectly uniform then nmaz -- nmin - N/Ctot and there is perfect load balancing.

However when the density distribution is not uniform then rtmaz _> N/Ctot _> nmin

and there is imperfect load balancing. Again it is possible to argue that density

is a very "restrained" variable and the ratio nmaz to N/C¢o_ is rarely more than

10. Furthermore the cost of router communication decreases as the network trafilc

lessens, therefore the extra cost in communications does not increase linearly with

the ratio rtmaz to N/C¢oI. Nonetheless this is cause for concern in the case of very

72

non-uniform density distributions and one would want to consider optimizations

such as ranking the stagnation region separately or performing some load balancing

in the grid before returning the rank values.

4.4 Sorting by Merging Ordered Subsets

This section describes a very fast ranking algorithm with performance indepen-

dent of the density distribution, and most suited for a two dimensional particle

simulation. The algorithm proceeds by identifying ordered subsets in the full set of

particles. The bulk of the work then involves the merging of these ordered subsets

into a single ordered set.

4.4.1 Two Fundamental Observations

There are two fundamental observations which can be made about the dynamics

of a particle simulation and which can be used to design an efficient ranking

algorithm for this problem.

(1) On every time step the particles begin and end in an ordered state. The

disordering of the particles occurs through their motion from one cell to another.

Furthermore, the nature of this motion is such that on one time step only about a

third of the particles will change ceils, therefore the set is never greatly out of order.

In fact it is precisely for this reason that there is statistical dependence between

even/odd pairings in succeeding time steps unless an effort is made to enhance the

disorder (see section 3.2.3 or 4.4.3 ahead).

(2) The motion of the particles is such that to a very high probability if a

particle moves out of its current cell it will move only into one of its two immediate

neighboring cells in the direction of motion, that is, particles do not move more

than two cell widths per time step (see figure 4.8).

4.4.2 The Merged Ordered Subsets Sorting Algorithm

The merged ordered subsets sorting algorithm proceeds in the following manner.

73

1 2

6/\
1 _12

21 22

8

/\
18

4

J
14

24

5

25

Figure 4.8 The maximum radius of motion over one time step is to a very high probability leas
than two cell widths.

Making use of the first observation, at the beginning of the time step the particles

are ordered and every processor is storing a value for its particle's current cell index.

The particles then go through their motion after which a new value for the cell index

must be computed. Both the old and the new values are stored, and now use is made

of the second observation. It is convenient at this point to map the cell index into

two dimensions and designate the pre-motion values by i,j and post-motion values

by il,y. Referring to figure 4.8 and assuming the second observation holds true,

then it is obvious that a particle beginning in cell i,j has at most 25 different and

mutually ezcluJive possibilities for its new cell location il,j I. (In three dimensions

there are at most 125 mutually exclusive possibilities.) Conversely, if at the end of

its motion a particle is occupying cell il,j I, there are at most 25 mutually exclusive

possibilities for its previous ceil position i,j. Therefore one can divide the set of

particles into 25 distinct and ordered subsets based on the 25 distinct possibilities

74

for a previous cell location. In other words, becausea particle in cell il,j I has 25

mutually exclusive possibiUties for its previous ceil location i,j, and because the

particles were ordered in their previous cells, it follows that the order must be

preserved in 25 mutually exclusive subsets. The problem thus has been reduced to

one of identifying these 25 ordered subsets and merging them into just one set.

Identifying each subset is accomplished by simply comparing the previous ceil

position to the current one. Also at this time it is convenient to count the number

of particles in each of the subsets. This is useful later for optimizing the merging

step since often there are less than 25 active sources in a time step.

To merge the subsets it is necessary to identify the lowest numbered processor

for every cell in each subset, and then enumerate in each subset the processors

representing a cell (see figure 4.9). A one dimensional grid, referred to as the

"merging grid" and distinct from the physical grid of the simulation, is created with

size great enough to contain an element for all the cells in the non-zero subsets.

In other words, if there are Cto_ ceils in the simulation and amongst all the cells

Ns subsets are identified as active sources for the particles, then the merging grid

must have at least NsCto_ elements. Note that Ns is usually less than 25 and once

steady state has been reached it almost always is equal to 9. In other words, active

sources usually include just the cell itself and its 8 immediate neighbors. Therefore,

although 25 possible sources must be checked, usually only 9 are active. Since Cto_

is usually a power of 2, and since VP sets are restricted to powers of two, the

greatest advantage occurs when Ns is 16 or less. If Ns is greater than 16 then the

merging grid must have size 32Ctot, but if Ns is 16 or less, then the merging grid

will have size 16Ctot. Therefore the merging grid is half the maximum size and any

operations performed with the processors of this merging grid will require about

half the time required in the larger sized grid.

The primary task for the merging grid is to compute the "global ending index"

for every active ceil in each active subset. This is just the greatest rank for the

particles in a particular cell and subset. As in section 4.3, the CH_send_with_add

instruction is used to determine the number density for every cell in each subset,

then the CM_scan_with_add instruction is used to create a running sum of the

75

number density or the global ending index. Therefore the merging grid now stores

the greatest rank in the merged llst for the particles in the cell it handles. The

particles in each subset can be ranked by subtracting their enumeration in their cell

and subset from the global ending index supplied by the merging grid.

The grid result is obtained by the particle processors through the use of the

CM_get instruction. In order to minimize router contention it is necessary to

minimize the number of particle processors active for this step. There are at most

N, Cto_ global ending indices, therefore at most N, Ctot particle processors need

to get a global ending index from the merging grid. In other words, one particle

processor for each cell and subset needs to get a value from the merging grid. This

value can then be copied across the rest of the particle processors in the cell and

subset using the CM_scan_with_copy instruction. The lowest numbered processor

for every cell in each subset was identified earlier in the algorithm and is used for

this purpose.

Figure 4.9 is a schematic for the patterns of communication. Steps in the

algorithm proceed from left to right across the page. In the first step the Ns

active subsets are identified and the particles in each subset are enumerated with

the enumeration re-starting at every cell. This requires Ns distinct pairs of scan

operations, a pair for each set. The first scan is necessary to identify cell boundaries

in a set and the second scan enumerates the particles in each cell. The next

step of the algorithm requires all processors to send to the merging grid to create

the cell number density. The global ending index is then created using a single

CM_scan_with_add. Next, one processor in every cell in every subset gets its global

ending index from the merging grid. This is depicted in the figure by an arrow

with heads on both ends thus emphasizing the fact that this operation requires

communication in both directions. Finally, this value is copied across the processors

in the cell in each subset by using Ns distinct CN_scanJith_copy operations. Now

the processors can compute their rank simply by subtracting their enumeration

within the cell (step 1 of figure 4.9) from the global ending index computed in the

merging grid.

76

subset

1

?

3

,4

1

subset 2

J?

1

subset 3

1

?

3

,4

subset l

:ell 0

subset 2

110

subset 3

1

?

3

.4

:ellO

MERGING GRID

CELL

DENSITY

4 I

4 I

RUNNING/

SUM /

4

7

11

subset l

4

4

4

,4

subset 2

7

7

7

subset 3

11

11

11

11

STEP 1 STEP 2 STEP 3 STEP 4 STEP 5

Figure 4.9 Schematic of the communications pattern in the merged ordered sets sorting algorithm.

77

4.4.8 Maintaining Statistical Independence

It was claimed above that maintaining statistical independence of pairings

between time steps is a concern of the simulation. In using the radix sort it was

necessary to concatenate random bits to the end of the key and order the particles on

this expanded key. The multi-grid sort inherently introduced mixing into the sorting

operation by letting particle processors randomly select levels in the multi-grid.

The merged ordered subsets algorithm maintains elements of randomization in two

ways. The first of these comes about from the manner in which the Na subsets are

mapped to the merging grid; the second is a result of employing the merging grid to

compute the global ending index as opposed to the global starting index for a cell

and subset. It is shown in this section that these mechanisms for randomization are

not sufficient and it is necessary to further enhance the randomization.

It is worthwhile at this point to analyze the requirements of statistical

independence. More specifically, we would Like to be able to answer the question

"how many identical pairs can one expect between two successive time steps if

at each time step the choice of candidate collision pairs is made independent of

the previous time step?" This would allow us to gauge quantitatively whether a

particular algorithm maintains statistical independence or not. For this purpose,

consider an arbitrary cell and let n be the number of particles within it. One can

create N = (_) different pairs from these particles. In a simulation one actually

creates only/c pairs where typically/¢ - n/2. Clearly there are (kN) different ways

to choose k pairs from N. The probabiLity of making any particular selection must

be (kN)-I Now consider the probabiLity that in making two selections no two pairs

are found common. Since the first selection takes k pairs out of the pool of available

combinations, in the second selection only N - k pairs are available. So there are

(Nkk) ways of choosing k pairs without using any of the same pairs chosen in the

previous selection. Therefore the probabiLity that in the second selection there are

no pairs from the first selection must be

(4.12)

78

Now consider the probability that in making two selections exactly one pair is

common in both. The first selection takes N-(k-1) pairs out of the pool, and there

are (kl) ways of choosing the one common pair from the k selected first. Therefore

there are (N-_k-1))(kl) ways of choosing k pairs in the second selection with one

pair common to the first selection. The probability that the second selection has

one pair common to the first must then be

P(1) = (N_11))(kl)
(N) (4.13)

This can be generalized to a probability distribution for finding i common pairs in

two selections as

P(i) = (N_-i)) (_) i=O, 1,2,...,k. (4.14)

This series is known as the hypergeometric series and its mean is given by (cf.

Guttman, Wilks and Hunter)

k 2

p = _-. (4.15)

Now substituting our values for k and N in terms of the cell density n, we find

for large n the mean or expected value of the distribution goes to 1/2. This can

be interpreted to mean that if one were to count, over samples taken from many

cells with large cell densities, the number of pairs common over two time steps, the

average value would be 1/2 if the samples were selected independently.

Now consider the merged ordered subsets algorithm and how randomization is

introduced there. In mapping the nine subsets to the merging grid there are Ns!

different possibilities. Figure 4.10 illustrates one such possibility for Ns = 9. For

this example, consider an arbitrary cell in the simulation and its nine mutually

exclusive sources for particles, here numbered 1 through 9. Each of these sources

has an element associated with it in the merging grid. The 9 elements together

account for all the particles in the cell under consideration. It is clear that these 9

79

4

7 /

2

J

3

/
6

\

3

6

8

1

2

9

5

4

7

ARBITRARY CELL AND ASSOCIATED SOURCES MERGING GRID

Figure 4.10 One possible mapping of nine sources to the merging grid. In this situation, each cell

has at most nine sources for incoming particles which taken for all the cells make up nine mutually

exclusive ordered subsets of particles. There are 9! different possibilities for mapping these sources

to the merging grid.

sources can be mapped to the merging grid through any permutation of 9. By using

a random, statistically independent permutation on every time step randomness is

introduced to the outcome of the ranking. Once a permutation is chosen it is used

in mapping all the ceUs at that time step. In other words the permutation is a front

end array that gets applied in mapping the Ne ordered subsets of particles to the

merging grid.

Unfortunately this does not completely remove the concern with maintaining

statistical independence in even/odd pairings between time steps. Empirical

measurements show that one can expect on average two thirds of the particles

in the simulation to remain in their cells over one time step. Therefore of the Ns

subsets identified as sources of particles in a particular cell, the greatest source is

80

the cell itself. Since the ordering is maintained within each subset, many of the

particles in a cell can be expected to maintain the same neighbors in the NEWS

grid between time steps. This is undesirable since collision candidate pairs are

created from neighboring processors and for the collision selection rule to properly

simulate the fluid mechanics it is absolutely necessary that the pairs created from

the particles in a cell represent a random sample of all the different possible pairs

which could be created.

The number of pairs created in a cell which are identical over two time steps

depends on the particles that leave the cell between the first and the second time

step. As an example consider the case of two particles leaving a cell which contained

a total of four particles. If the two particles which leave were paired together as

collision candidates in the cell, then the two remaining particles also were paired

together and in the next time step, since their order is preserved, these two will

again be paired together in the cell. Assuming as many particles enter the cell

as leave, then half of the pairs created in the cell are identical over two time

steps. Alternatively if the two particles which leave were not a pair, then they must

have been paired with the two particles remaining in the cell. The two remaining

particles, which were not paired together at that time step, will be paired together

in the next time step, therefore in this situation none of the pairs created in the

cell are identical over two time steps. This example can be made more general as

follows. Consider a particular cell, let n be the cell density and let f be the fraction

of particles which remain in the cell over the time step. If all of the particles

which leave the cell were paired amongst themselves as collision candidates, then

of the particles which remain all are paired identically over the two time steps.

Again assuming the cell density is constant over the two time steps, then n f�2

identical pairs are created. Alternatively if among the n(1 - f) particles which

leave the cell none are paired amongst themselves as collision candidates, then

nf - n(1 - f) particles remain which are paired identically over two time steps

leading to n(2] - 1)/2 identical pairs. Typically one can expect a result somewhere

between these two extremes. If f = 2/3, then at worst one third of the pairs are

identical and at best one sixth of the pairs are identical over two time steps.

81

This result is not very encouraging. The additional randomization in the method

comes from reversing the order of enumeration of the particles in each cell and subset

by using the global ending index in computing the rank. The rank is computed by

subtracting the enumeration from this value. If the global ending index is odd, then

evenly enumerated particles will get an odd rank and oddly enumerated particles

will get an even rank. Consequently the pairing of particles, which is done as

even-with-odd, will differ between the two time steps. This must occur on average

in 50% of the cells, therefore for half of the cells the sample of collision candidate

pairs is independent between time steps. Unfortunately, for the other half of the

cells one can still expect between one third and one sixth of the pairs to be identical

to those of the previous time step. This is far more than one would expect for

statistically independent samples.

These results indicate that further randomization is required in this ranking

algorithm. This additional randomization must be applied at two scales. Within

a particular cell, there must be randomization in the order of the particles in each

subset, and there must be randomization of the ordering across the subsets. The

opportunity for accomplishing the first of these exists in the enumeration stage of

the algorithm. The order of enumeration within each subset can be shuffled in a

deterministic fashion at very little cost. The shuffling is performed by re-numbering

the processors in a cell after the regular enumeration has been performed. Two

shuffling algorithms are employed because each shuffling algorithm is deterministic

and two applications of the same shuftIe to a data set produces no change in the

relative ordering. Alternating between two different shuffling algorithms ensures

there is no correlation between samples taken two time steps apart.

Shuffling requires the particle processors to know the subset cell density. This

is obtained through the use of the CM_scan_with_copy instruction. Figure 4.11

has a schematic for each of the two shuffling _gofithms. in the first shuf_ing

algorithm, the processors which previously had an even number are re-numbered

continuously from 1 to n/2 and the processors which previously had an odd number

are re-numbered continuously from n/2 + 1 to n. On the next time step when these

processors are paired as even-with-odd the renumbering will effectively make pairs

82

PARTICLE CURRENT RE- NEW
NUMBER NUMBER ORDER

a 1 3 b

b 2 1 d I

c 3 4

d 4 2

SHUFFLE 1

PARTICLE CURRENT RE- NEW

NUMBER NUMBER ORDER

a 1 1 a I

b 2 4 d I

c 3 3 c I
I

d 4 2 b I

SHUFFLE 2

Figure 4.11 Two deterministic shuffling algorithms. These shuffles are applied on alternating time

steps to the particles in each ceil in order to ensure sufficient mixing.

as even-with-even and odd-with-odd in terms of the addresses in the previous time

step. In the second shuflting algorithm, the numbering of the odd processors is left

intact but that of the even processors is reversed. Therefore if hey is the number

of even processors, then their numbering is changed from from 2, 4, 6,..., 2net to

2ner,27zev - 2,...,2. On the next time step when these processors are paired

as even-with-odd the renumbering will effectively make pairs as £rst-with-last,

second-with-secondlast, and so on, in terms of the addresses in the previous time

step. The reason for two shuflting algorithms should now be clear. If either of

the two shuffles are applied twice in sequence, the resulting pairing is unchanged.

However by ulternating between the two shumes it is possible to guarantee different

pairings for at le_t two succeeding time steps. By the third time step most of the

particles in a cell have left and it is not necessary to worry about correlations over

more than two time steps.

Randomization of the order across subsets must now be addressed. This

randomization is absolutely necessary because the particles within each subset are

highly correlated amongst themselves. Recall that each subset is identified on the

83

basis of the direction of motion of the particles. For example, one subset will include

all the particles which arrived at a new cell from the neighboring cell directly below.

Therefore all those particles will tend to have positive v velocities regardless of how

they are rearranged amongst themselves. Some correlation like this will exist in

each of the subsets. In order to eliminate such correlations it is necessary to mix

the order across subsets.

Of the two shuffles described above, it is clear that only the second one will

allow mixing across subsets. The extension of this algorithm to shuffling across a

complete cell is straightforward; hey becomes the number of even processors for

the cell, as opposed to the number of even processors in a subset for the cell. The

new numbering will then result in pairings between particles of different subsets in

the cell. In a similar fashion the algorithm can be applied separately to the first

and last half of the processors for the cell. By alternating between shuffling over

the complete cell and shuffling the first and last halves separately, the pairing of

collision candidates is made random. The effectiveness of these shuffling algorithms

is investigated in Chapter 7 through calculations for thermal relaxation in a heat

bath and for shock= wave profiles. The results of these calculations could not be

correct if the sample of candidate collision pairs taken from a cell is not random.

4.4.4 When Assumptions Fail

The algorithm has been presented from a physical perspective and in the context

of a generic cell in a generic time step. Two observations of the dynamics of the

simulation were necessary for the algorithm to be valid. It is necessary now to

discuss the situations where these observations do not hold true and the algorithm

cannot be used.

The obvious situation for which the sort wiU fail occurs when particles move

over more than two cens in one time step. The assumption that particles do not

move more than two cell widths in one time step is true to a very high probability,

however given the statistical nature of the simulation it is impossible to rule out the

possibility of a particle not holding to this assumption. Therefore it is necessary to

84

trap such instances and switch to the multi-grid sort when they occur.

A more common situation is for the first observation to fail. The first observation

claimed that the particles go from an ordered to a disordered state through their

motion from one cell to another. This is not true at the upstream boundary of the

wind tunnel where new particles must be introduced to maintain the free stream.

However the introduction of new particles can be delayed an arbitrary number of

time steps, therefore it is convenient to employ the multi-grid sort on those time

steps where new particles are introduced and use the merged ordered subsets sort on

the other time steps. The alternative is to treat the introduction of new particles as

an edge effect and handle it separately. Since the new particles can be introduced

in an ordered fashion the algorithm can be modified to handle this situation by

performing an additional merging. In other words, after ordering the particles in

the flow one introduces the new particles and merges these with the flow particles.

The merging now involves only two ordered subsets and proceeds much faster than

with Na subsets.

4.4.5 Performance and Extension to Three Dimensions

The performance of the merged ordered subsets algorithm depends to some

degree on Ns, the number of subsets to be merged. Na is usually 9, and for this

case the merged ordered subsets algorithm takes about 45% of the time of the radix

rank.

The performance of the algorithm scales linearly with the number of particles

in the simulation. There is also some dependence of performance on Cto¢, the

number of cells, since this number determines the size of the merging grid to be

used. However the fraction of work performed by the merging grid is decoupled from

the fraction corresponding to the particles. Recall that the merging grid is used to

perform one scan and one send operation. The time to perform these operations is

dependent on Ctot and is independent of N, the number of particles. Therefore the

algorithm can be characterized as scaling as O(N + Cto_) although this should not

be interpreted too literally since the time spent by the particle processors relative

85

to the grid processors is dependent on the particular problem.

The algorithm has been presented and discussed for only two dimensions.

The extension to three dimensions is straightforward but does involve a loss in

performance due to increased communications. In three dimensions there are

at most 125 mutually exclusive sets instead of 25. Again one can expect for

the vast majority of time steps only immediate neighbors will act as sources of

particles in a cell, therefore in three dimensions 27 ordered subsets will usually

be identified as opposed to 9 ordered subsets in two dimensions. The algorithm

requires three scan operations with the particle processors per subset. In two

dimensions these operations account for 55% of the time to rank. In the worst

case, in three dimensions that fraction of the algorithm would triple in time so

overall the new ranking algorithm would take about 2.1 times longer than for

two dimensions. In addition, the merging grid would be twice as large in three

dimensions and the time spent by the merging grid would double. Based on

these linear extrapolations it is doubtful that the algorithm would be competitive.

However the above discussion neglects to consider the smaller size of each subset

in three dimensions and the corresponding effect of reduced contention in the

enumeration of each subset. Therefore it is possible that in three dimensions the

algorithm would remain competitive and it should not be ruled out for consideration

until it has been implemented and tested as such.

86

Chapter 5

Implementing General Boundary Conditions

The discussion thus far has focused on the collision of particles amongst

themselves, however of equal importance to a successful implementation of a

particle simulation is also the collision of particles with the surfaces within physical

space. The physics of this class of interaction is not as well understood as one

would hope. Most models for particle-surface interaction assume a perfect crystal

lattice for a scattering surface which interacts with incident particles through some

interactive potential such as inverse power-law or Lennard-Jones (Goodman and

Wachman (1976), Hurlbut (1986)). For purposes of a particle simulation the

exact mechanics of these interactions need not be addressed. As with collisions

between particles, the post-collision thermodynamic state can be sampled from

an equilibrium distribution, however the post-collision position of a particle is

more difficult to define. The situation worsens considerably when dealing with

ablating surfaces. The present work considers only the case of neutral particles

colliding with non-ablating surfaces and makes use of the modes developed by

Woronowicz (Woronowicz and McDonald (1989)). Reference is made to more

complex particle--surface interactions as appropriate.

87

5.1 Representation of Physical Space

5.1.1 Faceted Geometry Approximation

Physical space is represented by the cartesian grid of cubical cells discussed

in Chapter 3. Most problems of general interest involve the flow about some

aerodynamic body, therefore it is usual to set up physical space to simulate a wind

tunnel. Other configurations are occasionally of interest, for example a simple

adiabatic mixer is useful for studying the relaxation of a gas into the equilibrium

state or a standing shock configuration is useful for investigating the internal

structure of a shock wave. These configurations are generally important only for

developing or testing new collision models and have been implemented separately

from the wind tunnel configuration specifically for these purposes.

Surfaces are defined within the grid of cells by planar segments, therefore a

curved surface is approximated by a faceted geometry, as in figure 5.1. This is a

good approximation if the radius of curvature of the surface is much greater than

the dimension of the cell. Therefore in designing a geometry for a specific problem

it is necessary to ensure that a sufficient number of cells are available to accurately

represent the body. This is consistent with the paradigm under which the current

method has been developed, that is one where computationaUy efficient algorithms

allow greater numbers of particles, and therefore greater numbers of ceUs, to be

employed in a simulation.

This faceted body representation was first introduced by McDonald and

Baganoff (1988) and is a useful approximation which allows a great simplification

both in the procedure for identifying particles which undergo boundary interaction

and in defining the interaction for those particles. Each facet is defined by the

equation of a plane

Az + By + Cz + D = 0 (5.1)

such that the unit normal to the plane is then n = (A,B,C) and D is the

displacement of the plane from some origin with a fixed position for all the facets.

S8

¢sssJ

 iiiiii)i .,,,,.........%%%%

• _ s • iill i!

D
D

BODY SURFACE

GEOMETRY BOUNDARY CELLS

GEOMETRY INTERIOR CELLS

Figure 5.1 The faceted body approximation. Curved surfaces are approximated by planar facets
leading to a much simpU_ed calculation for the boundary interaction. Cells which are intersected

by the surface are unambiguously associated with a facet, however it is also necessary to associate

some interior cells with a facet in order to handle particles with sufllcient speed to travel beyond
the boundary cells in one time step.

89

Each cell which gets intersected by a body surface must then have associated with

it the parameters (A, B, C, D) representing the surface. It is also necessary for one

or two layers of cells interior to the body to have associated with them these same

parameters in order to capture any particles which had sufficient speed to cross the

surface and travel to an interior cell. All cells associated with the geometry through

these parameters will be termed geometry celIJ. It is a relatively straightforward

procedure to determine which particles have moved behind the surface. For a

particle i lying in a geometry cell the outward displacement, dn, between the particle

and the plane defining the facet is given by

d,, = Azi + Byi + Czi + D. (5.2)

If dn is negative then the particle must have moved behind the surface and the

appropriate boundary interaction must be performed. There exists some ambiguity

when particles have travelled to interior cells in that the the interior cell will be

associated with a single, particular, facet of the surface when in some instances it

may be possible for a particle to have arrived at that cell by crossing a different

facet from the one with which the cell has been associated. However, since the body

surface must have a large radius of curvature with respect to a cell dimension, this

introduces only a small and acceptable error.

A complete body definition must also include values for the fractional cell

volumes, V, of the boundary cells. These must be used to adjust the selection

rule (equation (3.1)) for colliding particles in these fractional cells. Therefore

as a minimum, a body may be defined by a table of the values A, B, C, D, and

V for all the surface cells and interior cells as necessary. For complex three

dimensional bodies the task of determining these values can be carried out using a

method devised by William Feiereisen and described in Feiereisen and McDonald

(1989). On the Connection Machine only two dimensional problems are considered,

primarily because the memory limitations make realistic three dimensional problems

unfeasible. Consequently a full body definition requires only the values A, B, D, and

V to be determined, and in describing the algorithms reference may be made to body

segments instead of body facets.

90

On the Connection Machine the principal problem that must be resolved to

efficiently implement body definitions of this type is again communications related.

The following section describes in some detail how the communications time can

be minimized in a manner that also optimizes the computational effort. The latter

becomes especially important when the surface interactions to be modeUed become

complex.

5.1.2 Storage of Geometry Table

The first issue which must be addressed in implementing this method is the

storage of the geometry table. The problem of storage here is quite different

from the one encountered in implementing the collision algorithm. The tables

necessary for the collision algorithm represent distributions which must be accessed

randomly. Since the collection of particles making up the simulation are themselves

a distribution it makes sense to store the two in the same fashion. In fact the random

motion of the particles is used to help ensure that entries taken from these tables

represent random samples from the distributions. The geometry table, however,

must be accessed in an ordered fashion and this randomizing mechanism is neither

necessary nor useful. For this reason the geometry table must be stored in its own

distinct VP set.

5.1.3 Definition of a Geometry Space

Having decided upon a method of storage for the geometry information, the

question now becomes how to access this information in an efficient manner.

McDonald (1990) describes how this is done in a vectorized fashion in his PSim

code on the Cray 2. In McDonald's implementation all the cells representing

physical space get mapped to a three dimensional array which stores a pointer

to the appropriate entry in the geometry table for each geometry cell and a null

pointer for the rest of the ceils. Therefore to get the geometry information it is

necessary to access this array once for each particle in the simulation to determine

if a particle is occupying a geometry cell and then use the pointers to obtain the

91

appropriate geometry table entry. It would be unreasonable to implement such a

mechanism on the Connection Machine. The communications penalty would be

great due to router contention from all the processors representing particles trying

to access the table of pointers. In order to minimize such router contention it is

useful to define within the simulation space a smaller rectangular subspace which

is just large enough to whoUy contain the body, as in figure 5.2. This subspace is

termed the geometry space and only those particles occupying the geometry space

are considered for boundary interaction. The purpose in defining such a subspace

is to greatly reduce the communications traffic by making use of the fact that most

bodies of interest will occupy only a small fraction of the physical simulation space,

therefore one can easily remove a large fraction of the particles from consideration

for boundary interaction. The only loss in generality is in the assumption of a

wind tunnel configuration. That is, inlet and outlet conditions are hard wired to

simulate a supersonic wind tunnel consequently the code can only be used in such

a configuration. As discussed earlier in this chapter, other configurations are only

of interest primarily in the development of new models and it is not unreasonable

to implement specific codes just for this purpose.

Having defined a geometry space in this manner, it is necessary to map the

geometry in that restricted space. The mapping used here is somewhat different

from that employed on the Cray 2, again a result of reducing communication cost.

On the Connection Machine, indirection can be used to reduce storage requirements

as it is on the Cray 2 only by incurring a performance penalty in communications

cost. If memory is at a premium then the extra cost of the indirect mapping may

be warranted, otherwise it is best to use a direct mapping both for simplicity and

in order to minimize communication cost. The following paragraphs describe first

the indirect mapping and then the direct mapping.

In the indirect mapping, the geometry table is split into two, one table stores

just the cell volumes for the geometry ceils and the other stores the geometry values

A, B, and/9 for the interior and boundary ceils. The two tables are stored in the

same set of processors however indirection exists only for storing the second table

and not in storing the first. Since there are usually less interior and boundary ceils

92

PHYSICAL SPACE GEOMETRY SPACE BODY

Figure 5.2 Definition of physical space and 8eometry space in a wind tunnel configuration.

than there are geometry ceils it is possible to save memory by storing each geometry

value of the second table in a separate processor as in figure 5.3. This assumes that

either the number of geometry cells or the number of virtual processors in the VP

set is at least three times greater than the number of interior and boundary cells,

which generally is a safe assumption given that VP sets cannot be created with VP

ratio less than one.

There is a direct mapping between the cells in the geometry space and the

table storing the cell volumes for these cells. In other words for every cell in the

geometry space there is an entry in a table containing the corresponding cell volume.

Processors representing particles in the geometry space can then access this table

g3 "

directly to get the cell volume. Indirection arises when these processors need to get

the surface geometry values stored in the second table. The pointers to the entries

in the second table can be packed into the same 32 bits storing the cell volume by

sacrificing some unnecessary precision in this value. The cell volume is a floating

point quantity always in the range [0, 1]. Therefore to pack a pointer and a cell

volume into 32 bits it is simplest just to sum the pointer value and the cell volume

together. Then to retrieve the pointer it is necessary only to truncate the packed

result, and to retrieve the cell volume it is necessary only to subtract the retrieved

pointer value from the packed result. The pointer indicates the location of the

first geometry value, A, for that cell. The geometry values B and D are stored in

the neighboring processors as in figure 5.3. The three values may be obtained by

three successive router communication events, however this will triple the router

overhead which for the CM_gst instruction is relatively great. A better procedure

is to temporarily modify the geometry table by letting the processors storing the

A values get the B and D values from their neighbors using two successive NEWS

communication events, and then the three values A, B, and D can be obtained from

a single processor with a single router communication event. Furthermore, if the

number of interior and boundary cells is less than the number of router nodes for the

geometry VP set, it is possible to arrange the second table such that each processor

storing an A value is on a single router node therefore router node contention is

minimized.

In the direct mapping the geometry table is not split, therefore there is a

complete entry with A, B, D, and V for every cell in the geometry space (see figure

5.4). A reflected binary Gray code is used in mapping the table to the processors.

This ensures that table entries are spread amongst all the router nodes thereby

reducing router node contention when the table needs to be accessed. Note that

with the direct mapping there is only a single communication event required to

access the table. Therefore the overhead in starting the communication is paid only

once, hence the communication cost tends to be lower for the direct mapping.

The direct mapping requires more storage than the indirect mapping because

all the geometry cells which are not associated with a boundary must still have

94

!iI iiiili!iiiiiiiiiiii!ili!iiiiiiiiiiii

¸iiiili!iii!ilii

GEOMETRY SPACE

oF
F
E
E
F
E
E
F

F_

F_

F_
F_

V

i

!
I

I

//

r _' i

i

NULL

B

A

D

B

A

D

B

A

D

B

A

D

B

A

D

B

A

D

B

A

D

GEOMETRY TABLE

Figure 5.8 Indirect mapping between geometry space and geometry table. For every cell in the

geometry space there is an entry in the geometry table storing the cell volume V and a pointer to
the storage location of the rest of the geometry values A, B, and D.

space allocated for the A,B, and D geometry values. However, the difference in

95

storage requirements is not as great as one would think because of the constraint

the Connection Machine has on the minimum size VP set one can create. For

example, the configuration installed at NASA Ames requires a minimum of 32768

(or 32k) virtual processors in a VP set when all 32768 physical processors are used.

Consequently the smallest size table which can be stored must have at least 32k

entries. For the two dimensional problems being considered the geometry space will

usually consist of somewhat less than 32768 cells, therefore for the direct mapping

the storage requirements can be met with 32k x 4 = 128k words. On the other

hand the indirect mapping requires 32k words for the two tables, assuming they

can be fit in a single VP set. Therefore the indirect mapping requires one quarter

the amount of storage necessary for the direct mapping.

The above discussion serves to highlight some of the inadequacies in the Connec-

tion Machine architecture when it comes to storing small tables. In large part the

impressive performance achieved on the Cray 2 in particle simulation calculations

has been accomplished by using tables of pre-computed values wherever possible

in order to avoid performing redundant computation. Clearly for the Connection

Machine to compete there must exist adequate mechanisms for implementing similar

table driven algorithms. Thus far the collision algorithm of Chapter 3 and the

boundary conditions of this chapter have required table look up. Each case required

careful attention to the manner of storage in order to minimize the cost of access.

Each resulted in a very different manner of storage but common to both was a

tradeoff of memory for communications performance. Consequently in both cases

the storage requirements were greater than that demanded by the table.

The observations made in the preceding paragraph help substantiate a more

general statement one can make about the Connection Machine, namely that

memory requirements for algorithms implemented on the Connection Machine

are generally greater than for the same algorithms on vector machines. This is

clue in part to the tradeoff between memory and communications but is more

accurately prescribed to an inherent characteristic of the architecture. An example

of this is manifest in the minimum table size requirement described above, but the

implications are more general. Consider that the allocation of temporary space is

96

A B D V

_! ii! _ i!. i!ii!_ ii !iiii!!i!_

GEOMETRY SPACE

GEOMETRY TABLE

Figure 5.4 Direct mapping between geometry space and geometry table. For every cell in the

geometry space there is an entry in the geometry table storing the values A, B, D, and Y. The

geometry table is stored in its own VP set which, due to the minimum size restriction on VP sets,

often will be much larger than the table. Table entries are spread amongst all the router nodes by
use of a reflected binary Gray code mapping.

97

effectively equivalent to creating a table, therefore the minimum size temporary

space which can be allocated is 32768 bits, in other words one bit al]ocated in

each virtual processor of the smallest size VP set one can create. In reality the

situation is worse because rarely can one use only a single bit of temporary space

per processor and rarely is one operating in the minimum size VP set. In a particle

simulation it is often necessary to allocate temporary space in the VP set storing

the particles. This VP set may have over two million virtual processors in which

case allocating a single word of memory in each processor leads to 2M words (that

is 8 MB) of temporary space. Note that all this space must get allocated even if

not all the processors are active for the calculation which requires the temporary

space. This is due to the $IMD nature of the Connection Machine and cannot

be avoided. All the processors in the active VP set must receive and be able to

execute the instructions issued from the front end computer, therefore reference to

memory locations within a processor must be identical for all the processors (since

these must be part of the single instruction issued by the front end) consequently

there can be only one stack pointer for all the processors in a VP set. The next

section examines how these restrictions can be circumvented in some situations by

spawning slave VP sets of smaller size.

5.1.4 Master and Slave VP Sets

Once the geometry space has been defined and the processors representing the

particles within it have been identified, it seems the next logical step would be

to have those processors get the geometry information from the geometry table

and then carry out the necessary calculations. It is not immediately obvious why

one would want to carry out the calculation with a different set of processors

since that would introduce additional communication. However, this situation is

analogous to sampling macroscopic quantities (see section 3.4) in that the total cost

in communication can be reduced by initiating the communication from a smaller

VP set. The reason for this has to do with the way instructions are carried out by

the Connection Machine. Recal] that instructions are issued from the front end and

98

sequencedto a set of virtual processors. Virtual processors are created from the

physical processors by allocating physical processor memory in equal amounts for

each virtual processor and then looping through the microcode of a given instruction

once for each virtual processor. The important point to realize is that the loop is

carried out even if the virtual processor is not active for the instruction. Therefore

in general the cost of executing an instruction increases linearly with VP ratio

regardless of the number of processors active. The most obvious exception to this

rule is in the case of router communication where router network contention is

reduced when less processors are sending messages, however from figure 2.3 it is

clear that this has a second order effect on performance compared to reducing the

size of the VP set. In the current situation we have isolated a relatively small

number of processors in a very large VP set which need to get information from

processors in a different VP set. Clearly there is a huge penalty to be paid if this

operation is performed from the large VP set since most of the processors there

will be inactive. The better solution is to create a separate VP set, which here

will be called the slave VP set, just to accommodate the necessary data from the

active processors and then perform these operations from there. The larger VP

set for which the operations are to be performed naturally is called the ma_ter VP

set. The slave VP set becomes a useful mechanism for improving performance only

when there is a relatively large disparity between the VP ratio of the master and

the slave VP sets. If this is the case then the cost of sending information from the

master to the slave can be more than recovered.

Given the considerations of the preceding paragraph, the algorithm for com-

puting the boundary interactions is as follows. A slave VP set just large enough

to accommodate all the particles in the geometry space is created. The processors

representing the particles in the geometry space then send their self-address and

the cell index of their particle to the appropriate processor in the slave VP set. The

sending processors here are in the master VP set, and the particle information in

the master VP set is in the rnaJter table. The self-address of a master processor is

actually the minimum required by the slave for it to proceed, however in the current

context the next step for a slave would be to get the cell index from the master,

99 _

therefore it proves more efficient for the master to send both the self-address and

the cell index in one package. With this information the slave processors can then

proceed to get the geometry information from the geometry table. The pattern of

communication here will depend on the method of storage for the geometry table,

that is whether there is an indirect mapping or a direct mapping of the geometry

table. The preceding section described the method of access in both cases. From

the geometry information, specifically from the cell volume, a slave processor can

determine if its particle is occupying a boundary or interior cell. Such particles

must be checked to see if they have crossed into the body and must be reflected

back into the flow. This requires the slav-.- processors to get the position and velocity

components from the master table and then apply equation (5.2). The manner of

reflection depends on the type of surface being represented.

Three different types of surfaces can be represented corresponding to inviscid,

isothermal, or adiabatic boundary conditions. The methods for simulating these

types of surfaces are discussed in the next section therefore the details will not be

described here. Essentially, for those particles which do undergo surface interaction

the slave processors must get more information from the master table and possibly

from the geometry table as well, perform some calculations, and then return the

updated position and velocity information to the master table. The final operation

which the slave processors must perform is getting the new cell volume for those

particles which changed cells after reflection. This information along with the

updated position and velocity for the reflected particles is returned to the master

table. This ends the algorithm, the memory of the slave processors can now be

deallocated and the slave VP set can be destroyed.

5.2 Models for Particle-Surface Interaction

In this section three models for particle-surface interaction are discussed; they

correspond to simulating inviscid, isothermal, and adiabatic boundary conditions.

100

5.2.1 Specular Reflection

The simplest surface interaction to model is specular reflection of a particle

from a stationary surface. Specular reflection is defined such that the angle

of incidence is equal to the angle of reflection, as in figure 5.5. No energy is

exchanged between the particle and the surface nor is the tangential velocity of

the particle affected, therefore this type of interaction is suitable for simulating

inviscid boundary conditions. Typically only the wind tunnel walls are treated as

inviscid but for validation purposes it is useful to compare simulation results to

theory, in which case simple bodies (such as the two dimensional wedge) may also

be treated as inviscid.

The only information necessary to perform the specular reflection of a particle

from a plane surface is the definition of the plane itself. A particle i lying a distance

dn behind a plane with outward unit normal ns will be reflected as

xti = xi - 2dnns.

The velocity will be reflected as

(5.3)

vts = vi + 2(ns-vi)ns. (5.4)

Equations (5.3) and (5.4) can be generalized for the ease of a non-stationary

surface. Such a situation is of interest primarily for the development of general

entrance and exit conditions in a wind tunnel simulation although it can also be of

interest in the study of flow over a body in motion.

To generalize (5.4) it is necessary only to substitute the relative velocity Vrel, i

between the particle and the surface, therefore

where

Vts = vi + 2(ns • vrel,i)ns (5.5)

Vrel, i -- vi -- vs (5.6)

101

vi

Oi

n$

I

dn
Oi Or I

Figure 5.5 Specular reflection of a particle from a stationary plane.

and vj is the velocity of the surface.

The generalization of (5.3) is not quite as straightforward. It is necessary to

consider the time step in two parts, that is the time before interaction and the time

after interaction. The time before interaction, t/r/is just the time for the particle to

have moved from its initial position to its intersection with the surface. Therefore

tb/ = n,-(x, -- xi) (5.7)
ns- (v, -- vi)

where xs is any point on the surface. The new particle position must be given by

advancing the old position for a time tbi at tlae pre-interaction velocity v i and for

time At - tbi at the post-interaction velocity v_i . In other words,

x¢i = x i + tbiv i + (At -- tbi)vri

where At corresponds to a full time step. Combining with (5.7) this becomes

(5.8)

102

= + tv, + 2n, . (AtC,r - ,,,)- + x,))no. (5.9)

5.2.2 Diffuse Reflection With Surface-Driven Energy Exchange

The diffuse reflection of a particle from a surface represents a more realistic

kind of surface interaction. A diffuse reflection is defined as one where the

post-interaction velocity is independent of the pre--interaction velocity, conse-

quently the post-interaction velocity must be sampled from some distribution. It

can be proved theoretically (cf. Wenaas (1971)) that in equilibrium the diffuse

scattering of particles from a surface must obey the cosine law. The cosine law states

that particles striking a surface element will scatter with intensity proportional to

cos 0a regardless of the angle of incidence, where 0s is the scattering angle measured

from the surface normal. Note that this law does not state that particles leave a

surface in random equally weighted directions but rather the directions are weighted

by a factor of cos 0a. This is the result of biasing the equilibrium distribution to

include only those particle which have crossed the plane represented by the surface.

In other words, the cosine law can be arrived at by assuming that in thermal

equilibrium the velocity distribution of particles leaving a surface is identical to

that of particles arriving at the surface, both of which are distinct from the velocity

distribution of the gas as a whole.

From the above discussion it is clear that the post-interaction velocity of

a particle undergoing diffuse reflection can be arrived at by sampling from an

equilibrium distribution and accepting only a result which directs the particle away

from the surface. Alternatively, one can accept any sample from an equilibrium

distribution but reverse all the components of a result which directs the particle

back into the surface. The question remains as to the temperature of the equilibrium

distribution to be sampled. If this value is fixed for all particle-surface interactions

then the energy exchange between the particles and the surface can be considered

surface-driven and the boundary condition is isothermal.

103

In the current context, the post-interaction velocity can be sampled directly

from the thermalizer particles. As described in Chapter 3, particles which are not

in the flow are kept in a separate reservoir, or thermalizer, and are allowed to collide

amongst themselves. These thermalizer particles represent an equilibrium gas,

therefore to sample a post-lnteraction velocity for diffuse scattering it is necessary

only to use the velocity of a randomly selected thermalizer particle. The therma]Jzer

is kept at the free stream temperature, consequently to simulate a surface at some

arbitrary temperature it is necessary first to scale the therma_zer particle velocity

by a constant factor equal to the square root of Tj/To where Ta is the surface

temperature and To is the free stream temperature.

Unfortunately, there is no law similar to the cosine law for determining the

post-interaction position of the particle. Currently the post-interaction particle

position is defined by

xli --xi - dnna (5.10)

which is similar to equation (5.3) but always places the particle directly on the

surface. Woronowicz and McDonald (1989) report some flow fieldsensitivityto

the placement of the particleafter boundary interaction,which isnot unexpected

given the direct influence this has on the boundary layer. Placing the particleon

the surface is equivalent to assuming that the surface interaction time is on the

order of a time step. This isnot a good assumption and it ismore likelythat the

surface interaction time is on the order of the collisiontime which is much less

than a time step. The alternativethen is to place the particle somewhere in the

flow, consistent with assuming a short surface-interactiontime. However this too

is less than satisfactory. Consider that the post-interaction velocity must direct

the particleaway from the surface (a necessary restrictionto satisfythe cosine law)

therefore placing the particle away from the surface has the effectof creating a

vacuum rightat the surface which isalso undesirable. The issueisfax from resolved

and is in an area which clearlydeserves further investigation. Nonetheless (5.10)

does seem to reproduce satisfactoryresults and is currently used for all diffuse

reflections.

104

5.2.3 Diffuse Reflection With Gas-Driven Energy Exchange

The third type of surface which can be simulated is adiabatic and is defined as

allowing no net heat flux across the boundary. The specularly reflecting surface is

a very restricted example of an adiabatic boundary condition in that no energy is

transferred into the surface, however the reflection is not diffuse. The more general

case must have diffuse reflection and allow energy transfer into the surface on an

individual basis but such that over many interactions there is no net energy transfer.

The approach described in the previous section cannot be applied here because the

surface temperature is not fixed or known a priori. The surface temperature is

dependent on the state of the gas at the boundary, therefore the energy exchange

between the particles and the surface can be considered gas-driven and requires a

different approach to specify.

The approach taken here was first proposed by Woronowicz and McDonald

(1989). In this method a boundary particle is created to represent the surface, then

when particles interact with the surface they do so by undergoing a collision with this

boundary particle. The coUision is inelastic in the sense that the internal energies

of the particles are allowed to participate in the energy exchange, however total

energy is conserved over the coUision. The surface is always in thermal equilibrium

with the gas therefore the surface temperature win equal the gas temperature and

there can be no heat flux into the surface. However the boundary particle will

tend to acquire a net momentum from repeated collisions with flow particles which

are always directed into the surface. This problem is alleviated by restricting the

motion of the boundary particle to a cubical ceU. This is accomplished simply by

permuting the boundary particle velodty components after each collision and there

is no need to trace the particle's position.

It is important to note that the model, as described thus far, allows only a single

temperature for the entire surface represented by the boundary particle. In other

words there is perfect thermal conductivity in the surface. Initial investigations

with this model concentrated on the flow over a wedge and used a single particle

to represent the whole wedge. It was found that the rear of the wedge acquired the

105

same temperature as the face and therefore had a stronger influence on the wake

flow than ought to have been the case. The obvious solution for such a situation is

to have two boundary particles, one for the face and one for the rear of the wedge.

Since the flow over a wedge is conical the face will acquire a single temperature and

a single boundary particle can be used to represent this surface. However, more

general geometries cannot be represented as simply and in the most general case

one would require a boundary particle for each cell of the surface. This is the model

implemented on the Connection Machine.

On the Connection Machine there exists a boundary particle for every cell

associated with the surface. The particle is monatomic therefore only the three

translational velocities need to be stored. These are stored in the same VP set used

to store the geometry information and again a binary reflected Gray code is used to

ensure that the particles are spread evenJy amongst all the router nodes for optimal

communication. The boundary particle information is accessed by the slave VP

set after the slave processors have determined which flow particles must undergo

surface interaction. At this point the appropriate slave processors get the boundary

particle information and perform a strictly elastic collision between the monatomic

boundary particle and the flow particle. The update boundary particle state is

then returned to the geometry VP set. Note that all the particles in a particular cell

that undergo surface interaction are made to collide with a boundary particle which

is in the same state for each collision. After collision with the flow particles only

one updated state is actually returned to the boundary particle, in other words

only one surface interaction in a time step is allowed to change the state of the

boundary particle. This imposes a small restriction on the influence a single surface

interaction has on other surface interactions in that time step. For a given time

step and in a given cell all the surface interactions are carried out independent of

each other and the result of one interaction does not affect any other for that time

step. Consequently the amount of energy exchange between the surface and the gas

over one time step is more restricted than it would be if each surface interaction

in a cell were carried out sequentially and thus allowed to influence the state of

the surface for all succeeding interactions. However this is a small and therefore

106

acceptable restriction since the actual number of surface interactions in a cell is

small and since the particles in a cell are all in a similar state. In fact gradients

cannot be supported across a cell and the particles in a cell can be considered to be

in thermal equilibrium therefore it is not strictly necessary to allow a dependence

between particle-surface interactions within a time step.

107

Chapter 6

Active Flow Visualization

Through the I/O Subsystems

The capability of transmitting at high bandwidth to I/O subsystems is a feature

of the Connection Machine which allows the investigation of transient or unsteady

flows. In particular, the DataVault can be used to save the solution throughout

the transient or unsteady phase, and the frame buffer can be used to visualize the

solution either in real time or as play back from the DataVault. The performance

penalty in carrying out these operations during the calculation is minimal because

the links to these I/O subsystems are of very high bandwidth. This chapter

discusses the visualization technique employed with the particle simulation and

various strategies for applying this technique in the investigation of transient flow

phenomena. Finally, the extension of this technique to three dimensional flows is

described.

6.1 Visualization Technique

6.1.1 Mechanism for Visualization

The particle simulation method is particularly appealing to visualize because

108

the calculationis tied closelyto the actual gas dynamics. The mechanism for flow

visualizationin realtime and as play back isthe same. Each particleisrepresented

by a colored pixel in the display,therefore the motion of the particlesisseen in the

corresponding motion of the colored pixels.

This mechanism for visualizationis unique in the quantity of information that

can be assimilated by the viewer. Density in the flow isimmediately visiblethrough

the concentration of painted pixels in the display. Similarly,the velocity fieldis

visiblein the motion of the painted pixels in the display. Therefore there is a

directcorrespondence between the number density and velocityin the flow and the

painted pixel density and motion in the visualization. Furthermore, it ispossible

to concurrently visualizeanother thermodynamic variable,such as temperature or

pressure,by mapping itto a color scaleand applying thisscalein painting the pixels.

Such thermodynamic variablesrepresent macroscopic flow quantitiesgenerated from

the particledistributionswithin the cells_thereforewithin a cella singlecolor value

is representative of all the particles. The color of a particle in the visualization

corresponds then to the value of the macroscopic flow quantity in that region of the

flOW.

The limitation in this mechanism usually liesin the resolution of the display

device. Typically one can expect no more than 106 pixels to be available for

the display such that in a simulation space of 256 x 256 cellsone will have a

resolutionof 16 pixelsper cell.In a simulation involving2.0x 106 particles(currently

the greatest number possible on the Connection Machine available through the

Numerical Aerodynamics Simulation facilityat NASA Ames, although one would

expect this number to be as high as 16 x 106 on a 64k processor machine with a

memory upgrade)]t becomes impossible to resolvethe individual particlesifallare

to be displayed. Therefore itisnecessary to display only a fractionof the particlesin

order to visualizetheir motion and concentration. By displaying every k th particle

in the list(/cbeing some suitably large integer),one can stillvisualizethe density

and velocity fieldalthough not allthe particlesfrom the simulation are displayed.

109

6.1.2 Implementation of Visualization Mechanism

The implementation on the Connection Machine of this mechanism for flow

visualization with a particle simulation makes use of the frame buffer. The frame

buffer allows dynamic displays of size 512 x 512 or 1024 x 1024. Naturally the

greater resolution display will require a corresponding greater number of virtual

processors, and therefore memory. The lower resolution display is useful when

memory Limitations rule out the greater resolution or when the visualization is to

be recorded on video tape for play back at regular network tdevision resolution

(NTSC format).

The geometry is displayed on the overlay buffer. Since the geometry is static

there usually is no need to redraw the overlay buffer during the visualization.

Nonetheless redrawing the overlay buffer during the visualization normally is fast

enough that it does not affect the animation of the flow. Therefore the overlay

buffer can also be used to display changing statistics in the simulation. For example

a dynamic "time bar" can be used to display the current time step or one may want

to display other scalar information such as peak temperature in the flow, total heat

loading on the body or Lift and drag for the body. If the overlay buffer is to be

used dynamically in such a manner then it is necessary to save the static portions

to avoid recomputing the display. This is especially true when text is involved since

fonts are bit mapped and font calculations are carried out on the front end at a

tremendously slow rate by comparison.

The particles are displayed on the RGB (Red/Green/Blue) buffers. These can

be configured as a single 24 bit color buffer or as three separate 8 bit color buffers.

With the current technique 24 bit color is unnecessary since the eye is uncapable of

grasping such a broad palette of colors in a dynamically changing display of moving

particles. Therefore it is better to employ 8 bit color thereby saving memory at

a rate of 16 bits per pixel. For a static display 24 bit color may be useful for

enhancing the visualization of density while letting all the particles be displayed.

In such a case instead of using RGB values to map the colors one would use HLS

(Hue/Lightness/Saturation) values, letting the hue and lightness determine the

.¢

110

color corresponding to the desired thermodynamic quantity for particles in a cell

while letting the saturation give some idea of the number density. The color scale

would then be two dimensional, with the mapping for the the displayed quantity

given along one axis and the mapping for the density along the other.

With 8 bit color one has three separate color buffers for the display. It is

possible to write to any of these three buffers, however only one buffer can be

displayed at a time. Because changing the displayed buffer is always faster than

writing to the buffer, animation is performed on most graphics systems by writing

to an undisplayed buffer and switching with the displayed buffer once the writing

is completed. This technique can be employed on the Connection Machine as well

although, as was mentioned in describing the use of the overlay buffer, the writing

to the buffer proceeds faster than the eye can respond therefore it is unnecessary

to employ such a strategy.

Writing to the frame buffer is similar to communicating to a separate VP set. To

display the particles in the frame buffer, the VP set storing the particle information

must send an 8 bit color value to the frame buffer for every particle which is to be

displayed. If only a fraction of all the particles are to be displayed, it is advantageous

to use field aliasing (as discussed in Chapter 2) to reduce the VP ratio and speed the

communication. If the color value is to correspond to a thermodynamic quantity,

then that quantity must first have been sampled from the simulation and the result

must have been mapped to an 8 bit integer in all processors which are to display

their particle. Note that this additional calculation and communication takes less

than 5% of the total computational time.

6.2 Visualization Strategies

6.2.1 In Real Time

In real time the technique described in the previous section is used for visualizing

the calculation as it proceeds. This can be of tremendous use for debugging code

III

as weU as for evaluating new geometries. As a debugging tool clearly it is useful

for identifying how the data is becoming corrupted. Often bugs in the program are

evident in the strange behavior of particles or unrealistic temperatures for the ceUs.

This kind of information is immediately available from a real time visualization and

can be used to identify the source of error.

In describing a new geometry it is necessary to ensure that particles do not leak

through the body and that the body is having the desired effect on the flow. Any

unexpected effect that the body definition may have on the flow becomes evident

through the visualization. In applying the simulation method to a new geometry it

is also necessary to make some estimate of how many time steps will be necessary to

reach steady state. Again this is information that is immediately available from a

real time visualization. In other words, one can see through the visualization when

the shock structure has become fully developed and the flow has reached steady

state.

6.2.2 Through Play Back

The idea behind using play back visualization is both to speed up the display of

information and to have a stored solution which can be viewed repetitively without

repeating the initial calculation. The limitation one encounters is finding sumcient

storage for the solution. If there were truly infinite storage devices, one would then

store all the particle information for every time step and thus be able to completely

recreate any aspect of the simulation in the play back. Unfortunately, at 28 bytes

per particle (in two dimensions) and two million particles that requires 56 MB per

time step or about 6 GB per 100 steps. Clearly this is unfeasible for visualizing

transient flows over several thousand time steps.

An alternative is to store only the information sampled from the ceils. At a

minimum, one would store the number density, the u and v velocity components,

and the translational temperature. This would require 16 bytes per cell or 1 MB

per time step for a simulation with 64k cells. This is feasible in terms of the storage

requirements, however the visualization now loses those appealing aspects described

112

in the first section. In other words, the visualization would now proceed in either of

two ways. One would visualize the changing macroscopic quantities such as density

or temperature by displaying those fields with a suitable color map, or one would

visualize the changing velocity field using tracer particles in a manner analogous

to the visualization techniques used with regular CFD solutions of transient flows.

However, it is no longer possible to visualize both the thermodynamic quantities

and the flow field simultaneously.

There are two alternative strategies one can use in order to retain the

visualization technique described in the first section while using a feasible amount

of storage. The first of these strategies is simply to save each image of the flow as

it is created in the real time visualization. For a 1024 × 1024 display this requires

1 MB per time step regardless of the number of particles or the number of cells

employed. Although this scheme retains all the unique features of the particle

simulation visualization technique it suffers from a lack of flexibility in the choice

of displayed information. In other words, one has to decide ahead of time on the

quantity to be displayed and the color map to be used. This requires running several

smaller scale simulations with real time visualization to arrive at a suitable display

for the full scale solution. If one later finds not all the necessary information has

been captured, it becomes necessary to repeat the calculation.

A more robust scheme is to combine the two previous strategies, that is, saving

the sampled information and saving the display. By eliminating redundancies in the

information the storage requirements can be reduced to le_J than that necessary

in applying either strategy individually. As a minimum one saves the sampled

density, the temperature, and the flow speed for the cells. From the density and

the temperature any other equilibrium thermodynamic quantity can be computed,

and from the temperature and the flow speed the Mach number can be computed.

For a grid of 64k cells these three quantities will require 768 kB of storage per time

step. In addition to this, in order to visualize the particle motion in the flow just a

bit map of the display is stored. Since the smmpled flow information will be used to

to color the particles it becomes unnecessary to save the color used in the real time

display. Storing a bit map of a 1024 x 1024 display requires 128 kB, therefore in total

113

896 kB per time step are required with this scheme. To produce a display the bit

map is used to identify the pixels which need to be painted, and the saved solution is

used to select a color. This scheme has the advantage of saving the actual solution,

as opposed to the displayed visualization. For this reason the scheme allows great

flexibility in recreating the simulated flow. It is possible to visualize any desired

quantity through an appropriate color map, therefore different reproductions of

the simulated flow can be created in order to investigate the behavior of different

quantities throughout the solution.

The design of a good color map is not a trivial matter. When the color is to

be used to display a thermodynamic quantity it is necessary to know the range of

variation for that quantity and ensure that there is good contrast between adjacent

colors in the map throughout that range. The range of variation may change

dramatically with free stream Mach number and a single universal color map is not

possible. With the play back visualization one can tailor individual color maps for

each displayed flow quantity to produce the best effect for the particular geometry

and flow conditions being simulated.

6.3 Extension to Three Dimensions

The discussion thus far has been restricted to the visualization of two dimen-

sional flows. Eventually it is desired to apply this technique to three dimensional

flows, therefore it is appropriate to address the question of the changes required in

the visualization technique. It is clear that one could not simply display the entire

flow as an isometric projection without adjusting the size of the displayed particles

to reflect depth in the flow. In theory this would give a correct representation of

a three dimensional flow, but in practice one would almost certainly find that the

resolution of the display device would prove to be a limitation. The experience

obtained in displaying two dimensional flows indicates that four pixels per particle

is the coarsest resolution one can use without defeating the purpose behind using

colored particles to visualize the solution. Even at a pixel per particle one has to

114

make compromises in the number of particles displayed, therefore the display device

already is a limitation in the visualization of two dimensional flows.

It is evident that the technique can be applied only to the two dimensional

planes making up a three dimensional flow. The issue then becomes how to convey

the three dimensional information in a two dimensional medium. This could be

best accomplished by allowing fast switches between planes in the simulation.

In other words, the displayed plane could be allowed to change rapidly under

user control thereby allowing the user to investigate the third dimension of the

solution in whatever manner desired. In a two dimensional visualization user input

is not necessary because people are accustomed to two dimensional displays and

generally have similar responses to information conveyed in this manner. This

is not true of three dimensional information where the response will vary greatly

from person to person. Therefore it is important for the visualization of three

dimensional information to be under the control of the viewer. In such a scheme

it would be necessary to aid the viewer in grasping which plane is being displayed.

For this purpose the overlay buffer could be used to display the entire three

dimensional geometry in isometric projection while the particles corresponding to

a two dimensional slice of this geometry would be displayed.

Naturally the storage requirements of a three dimensional flow visualization are

much greater than for two dimensions. In three dimensional simulation with 64k

cells in the two dimensional plane one would require 896 kB per plane per time step.

With 50 planes in the simulated space one requires 44 MB per time step. Therefore

storage limitations make it impossible to save a full transient solution, however the

technique could be very useful for visualizing the steady state three dimensional

solution. For the steady state one need save only the time averaged solution, not

the transient solution at each time step. The steady state solution in this example

would require 12.5 MB per sampled quantity. The bit map information for one time

step would require an additional 5.3 MB. Therefore three sampled quantities and

bit maps for 10 time steps would require only 91 MB of storage. The visualization

would proceed by looping over the 10 bit maps to display the particle motion while

using the saved solution to decide on a color for each particle. The user would

115

control which plane is displayed and what quantity is used to color the pixels. The

entire 91 MB of information could be loaded into 16k processors so the visualization

would proceed at a very fast rate entirely from the Connection Machine.

116

Chapter 7

Results

The algorithms presented in the previous chapters are now applied to several

example problems in order both to validate the algorithms and evaluate the

performance of their implementation on the Connection Machine. The first problem

to be examined is the relaxation of the internal degrees of freedom in a diatomic

gas. Results are compared to solutions computed with McDonald's code on the

Cray 2. The second problem to be examined is the structure of a normal shock wave.

Again results are compared to solutions computed by McDonald. Finally, a large

two dimensional solution is presented for the flow field about a proposed geometry

for the Hermes Space Shuttle to be built by the European Space Agency. This

solution is used to demonstrate the capability of the method for solving hypersonic

flow problems of practical engineering interest and is also used to evaluate the

performance of the Connection Machine in comparison to the Cray 2 for a general

two dimensional problem.

7.1 Relaxation of Internal Energy Modes

To test the the nonequilibrium temperature model, the relaxation of a diatomic

gas to its equilibrium condition is examined. This simulation uses the adiabatic

117

box configuration with gas molecules initialized to a nonequilibrium state. The

energy exchange resulting from collisions of the particles eventually relaxes the

gas to equilibrium. In addition to providing a useful check on the nonequilibrium

temperature model, this simulation provides a particularly severe test of the

randomization algorithms incorporated to the merged ordered subsets sorting

algorithm. The aim of these randomization algorithms is to make the deterministic

"even-with-odd" pairing of collision candidates result in a statistically random and

uncorrelated sample of colliding pairs. Since multiple collisions of the same pairs are

effectively equivalent to a single collision, if the pairs in a sample are correlated to

those of the previous sample then the effective collision frequency is reduced. The

result manifests itself macroscopically as a reduced relaxation rate and produces

an incorrect equilibrium division of energy between the various modes. The latter

occurs because the temperature model assumes a particular energy distribution for

the set of colliding particles and redistributes the collision energy based on this

distribution. If the collision rate is incorrect then the set of coUiding particles will

also have an incorrect energy distribution and the correct equilibrium division of

energy is not obtained.

Figure 7.1 presents the results for relaxation from three different initial

temperatures and compares these to the same simulations performed by McDonald

on the Cray 2. In all cases the agreement between the two is excellent. It should also

be noted that these results are in agreement with results from DSMC calculations

performed by Boyd for the same problem (McDonald (1990)). The collision numbers

were fixed at Z,-ot = 5 and Zvi b = 50. The simulations employed a hard sphere

interaction potential with diatomic molecules having two rotational degrees of

freedom and a characteristic temperature for vibration corresponding to molecular

nitrogen, Ovi b = 3390°K. The Connection Machine results are represented by the

solid lines in the figure and the Cray 2 results are represented by the 'o' symbols.

The initial nonequilibrium condition was for all the energy to be in translation

leaving no energy in rotation or vibration. Figure 7.1a is the result for an initial

translational temperature of To = 273.15°K. For such a low reference temperature

one can expect essentially no excitation of vibrational states in the gas, and the

118

Z

IJ

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0,1

G
0

0.9

0,8

0.7

0.6

0.5

0.4

0.3

0.2

. 4 .d.q7r .;_4._.,e oooe_o._oo.9 -_-q_...o. - o-t-_oe-.-4_o-,_ .._-..e.. - - qr o- ._,* -

ef_ +

d"

8 '.............................

50 I00 150 200 250 300 350 400 450 500

.! : (b)
2

0.1 o.oo O.o,.ox,po_o4_80 Q* ooo all'o* ° ° °° _Q a*°c ° Q°a ° ° _ _° _° ° °°

ooO _e°
0 _ * ' '

200 400 600 800 1000 i200 1400 1600

0.9 ...

0.8

0.'7

,,_ 0.6

: o o,o oo o lltD0 0 _°O+Oe e_" -

0.2 ooO o°._'° e °

o •
0+I o °+

o
o

o
0
0 200 400 600 800 tO00 1200 1400 1600

Figure 7.1 Relaxation of internal degrees of freedom in a diatomic gas with fully excited rotational

energy and a characteristic temperature of vibration of 3,390°K. Results are for three initial gas

temperatures with only translational energy present a) 273.15°K, b) 3,390°K, c) T --+ o_. Symbols

are used for current results and lines represent the calculations by McDonald (1990). -- E,,;

Erot ; • • • .E,_ib
1!9 -

energy exchange is primarily between translational and rotational modes. For 3

translation degrees of freedom, 2 rotational degrees of freedom and no vibrational

equivalent degrees of freedom one expects an equilibrium division of energy of 60%

in translation and 40% in rotation, as is observed in the figure.

Figure 7.1b is the result for an initial translational temperature of To = 3390°K

which is exactly equal to the characteristic temperature of vibration. This represents

a situation where the vibrational state is only partially excited. It is possible to

calculate the theoretically expected equilibrium division of energy between the

various modes by considering conservation of energy. Conservation of energy

requires

3

err + e,ot + e ib = 5RTo. (7.1)

Assuming translation and rotation are both fully excited and using equation (3.28)

for vibration, then

err = 3 RT

erot = 2 RT

ROvib (7.2)
%ib = ezp(O_/T) - 1

Substituting (7.2) in (7.1) yields a transcendental equation in T which when solved

numerically for this particular case results in a final equilibrium temperature of

T = 1790°K. This corresponds to an energy division of 53% in translation, 35% in

rotation and 12% in vibration as is observed in the figure. Therefore the simulation

is producing the correct equilibrium result.

Figure 7.1c is the result for an initial translational temperature approaching

infinity such that the ratio Ovib/T approaches zero. This is the limiting case for

which vibrational energy becomes fully excited with two full equivalent degrees of

freedom. At equilibrium there is an equal division of rotational and vibrational

energy as is observed in the figure. Evident in this figure also is the rotational

120

energy overshoot due to the great difference in the relaxation rates of vibration and

rotation.

In all three cases the agreement with the Cray 2 results is excellent. This not

only is a validation of the nonequillbrlum temperature model as implemented on

the Connection Machine but also is a validation of the randomization algorithms

incorporated into the sorting. These results indicate that the simulation is creating

and maintaining the correct distribution functions for the particles. The next section

further validates the current implementation by examining the temperature and

density profiles across a normal shock wave in an ideal diatomic gas.

7.2 Normal Shock Wave Structure

Accurately predicting the internal structure of a shock wave is a prerequisite

of any valid particle simulation. The shock wave represents a region of highly

nonequillbrium flow connecting two different equilibrium states. This is a much

more complex problem to study than the relaxation of a gas because the molecules

undergo convective processes in addition to diffusion. This also is an important

test for a particle simulation since the shock wave problem represents an area

where particle methods historically have provided the only accurate computational

solutions. Continuum methods employing the Navier-Stokes equations produce

incorrect results for the internal structure of a hypersonic shock wave and efforts

at extending the continuum approach has focused on the solution of the Burnett

equations. Only recently (Lumpkin, Chapman and Park, (1989)) have these been

shown to provide reasonable solutions for shock wave profiles.

With the addition of bulk motion to the gas it becomes necessary to properly

simulate entrance and exit conditions for the molecules. Proper entrance conditions

are necessary for maintaining a uniform free stream, and a non-uniform free stream

has an immediate and adverse effect on the shock wave. Proper exit conditions

are equally important in order for the shock wave to remain stationary and allow

time averaged solutions. A standing shock wave is only neutrally stable and the

121

stability problems encountered by experimentalists creating such a flow in a wind

tunnel are also encountered in simulating this flow with a particle method. Owing

to the difficulty in defining the exit conditions for a shock which excites vibrational

modes, the results in this section are concerned only with rigid rotor particles with

no vibrational energy. In the following section a dosed end shock tube simulation

is employed to study the vibrational relaxation behind a strong shock.

Figure 7.2 presents the normalized temperature and density profiles across a

Mach 10 shock wave in an ideal diatomic gas and compares theseto results from the

same calculation performed on the Cray 2. The _o' symbols represent results from

the implementation on the Connection Machine and the solid lines represent results

from the implementation on the Cray 2. The agreement between the two again is

excellent. As with the relaxation results, these calculations have also been compared

to DSMC calculations performed by Boyd and have shown exceUent agreement.

This calculation allowed Duly rotational nonequllibrium and assumed a rotational

collision number Zrot - 5. Values are normalized to the post-shock equilibrium

state as given by the Rankine--Hugoniot jump conditions. Evident in the figure

is the translational temperature overshoot clue in part to the different relaxation

times between rotation and translation. The faster translational relaxation causes

the translational temperature rise to lead the rotational temperature rise and forces

a translational temperature overshoot in order to conserve energy across the shock.

It is incorrect to assume that translation leads rotation solely because of the

different relaxation times for these modes. Figure 7.3 presents the temperature

and density profiles across a Mach I0 shock with the rotational collision number

Zrot = 1. Clearly evident in this figure is a lead in translation over rotation and the

corresponding translational temperature overshoot. The reason for this lies in the

transport process which causes the temperature shock to lead the density shock.

Hot molecules from the high density region behind the shock migrate to the low

density region before the shock. Because these molecules are few in number they

have little effect on the density, however they have a great effect on the temperature

since it is proportional to the variance of the velocity distribution, which in this low

density region is defined on the basis of a relatively small number of molecules. It

122

0

-0.2
-6 -4 -2 0 2 4 6

Figure 7.2 Shock wave structure at Math 10 in a perfect diatomic gas with 7 = 1.4. Symbols are

used for current results and lines represent calculations made by McDonald (1990). D p; Tt,;

• . . T_.ot.

is for this reason that one sees the temperature shock leading the density shock.

Now if one considers the situation where translation and rotation are allowed to

relax at the same rate, the same transport process can be used to explain why

the translational temperature should lead the rotational temperature. It is clear

that those molecules which migrate furthest upstream will be the ones with the

greatest translational energy. These same molecules will not necessarily have the

greatest rotational energy as well, in fact the finite amount of energy available in

a collision makes it more likely for molecules with a large amount of translational

energy to have a disproportionally smaller amount of rotational energy. Therefore

translational energy is more likely to be carried further upstream than rotational

123 ""

1.2

0.8

,m

0.6
O"

0.4

o
z

0.2

-0.2
-6 -' -2

I

0 2 4 6

Figure 7.$ Shock wave structure at Mach 10 in a perfect diatomic gas with -f = 1.4 and Z, ot = 1.

Note the translational temperature overshoot exists even in this case where translation and rotation

ate allowed to relax at the same rate. -- p; Ttr; -" .T_ot.

energy and the translational temperature rise leads the rotational temperature rise

even when the two modes are allowed to relax at the same rate. On the basis of

figures 7.2 and 7.3 one can conclude that the method is not only correct in its

treatment of the nonequilibrium temperature relaxation but also in its simulation

of the transport processes responsible for the nonequilibrium phenomena.

The results above were all carried out assuming a hard sphere potential for the

molecules. Real gases exhibit somewhat softer potentials usually approximated by

an inverse-power law. In order to test the ability of the simulation with respect to

real gases, the shock wave structure for nitrogen was calculated for a range of Mach

numbers and compared to the experimental results obtained by Alsmeyer (1076).

124

For all Mach numbers the agreement between the simulation and the experimental

results was remarkably good.

Figure 7.4 presents the density profile for a Mach 10 shock in nitrogen, the

solid line corresponds to the experimental results and the 'o' symbols correspond

to the simulation results. The abscissa of figure 7.4 is non-dimensionalized by the

hard sphere mean free path, this requires scaling the simulation mean free path as

described by Bird (1983). Specifically,

24AsIM

AHS -- (7- 2_)(5- 2_) (7.3)

where AHS is the hard sphere mean free path, ASl M is the simulation mean free

path and _ is the exponent on the temperature dependence of viscositywith the

assumed power law (i.e.# ocT _). The simulation employed an inverse ninth-power

molecule for nitrogen as suggested by Alsmeyer (1976) and shown by Lumpkin

(1990) to accurately reflectthe experimentally observed temperature dependence

for the viscosity. This resultsin a viscosityproportional to T 0"72. A rotational

collisionnumber of5 was used forthiscalculation.The excellentagreement observed

between the experiment and the simulation for thisand other Mach numbers serves

as validation for the current method in the simulation of real gases.

7.3 Shock Reflection

Vibrational modes in a diatomic gas molecule become excited only once the

temperature is of the order of the characteristic temperature of vibration for the

molecule. Typically this is several thousand degrees, consequently experimental

investigations of vibrationally excited gases have almost exclusively employed a

shock tube since it is the simplest device capable of generating strong shocks with a

high enthalpy. The relaxation zone following an incident shock can be investigated

using optical techniques or, as demonstrated by Baganoff (1965), by monitoring the

end wall pressure following the reflection of the incident shock. The reflection of a

strong normal shock wave from a plane wall is a very complex process characterized

125"

1.2

0.8

._ 0.6

o 0.4
Z

0.2

0
-8

! j ! I

....................... _ _........................ i............... 00. ,

m 00

 i'!ii'iii'i 'i'i
-6 -4 -2 0 2 4 6

z/,_l

Figure 7.4 Shock wave structure at Msch 10 in nitrogen. Only the density profile is shown. An

inverse ninth power potential with g, ot = 5 was employed in the simulation. Symbols are used for

the simulation results, the solid line represents experimental results by Alsmeyer (1976).

by extreme pressures and temperatures in a non-uniform and highly nonequllibrium

flow. For these reasons it was appealing to attempt a simulation of the shock

reflection process as a means of further validating the method and, as well, as a

means of uncovering the limitations of the internal energy model.

Two different simulations were carried out for this problem. In the first the end

wall is assumed ideal and particles which strike the end wall are reflected specularly

back into the flow. This simulates a perfect, adiabatic end wall which does not

promote a boundary layer. In the second simulation the end wall is assumed to

be isothermal with some degree of thermal accommodation. Particles which strike

this wall are reflected back into the flow with energy corresponding to the wall

126

temperature. This type of boundary condition promotes a boundary layer at the

wall and more accurately reflects the conditions under which experiments are carried

out.

7.3.1 Ideal End Wall

The specularly reflecting boundary condition was discussed in Chapter 5. This

type of boundary has the advantage of not introducing a boundary layer thus

simplifying the interpretation of the results and allowing comparison with the

inviscid theory.

The gas used for these simulations was carbon monoxide. The molecules were

modelled similar to nitrogen, an inverse--power 9 potential was employed giving a

viscosity temperature dependence of T 0"72 which is a good approximation of the

observed viscosity. Note that the use of a heteronuclear molecule (symmetry factor

of 1) does not require any alteration of the rotational energy model since rotational

energy is assumed always to be fully excited. The characteristic temperature of

vibration of carbon monoxide is 0v = 3124°K, and the vibrational relaxation time

is given empirically by (Hanson (1971))

logl0(Pr , atrn - sec)= 75.8T -1/3 - 10.16 (7.4)

which has been validated up to 6000°K. The relaxation times in the simulation were

fixed to give a rotational collision number of 5 and a vibrational collision number

of 150. This is discussed more fully below.

Two sets of results employing an ideal end wall are presented here. The first

set of results is used to demonstrate that the method is producing the correct

frozen and equilibrium results in the gas. The second set of results is used to

investigate the relaxation of the simulated gas between these two conditions in a

situation where vibration is not fully excited by the incident shock and the exact

equilibrium condition is difficult to predict. These conditions were chosen partly

to allow comparison with the experimental results obtained by Hanson (1971)

although because of the limitations of the implemented internal energy model a

useful comparison becomes difficult to make.

127

The simulated shock tube had dimensions 1022 x 1 and was initialized with

65000 particles at a temperature of 300°K. The Knudsen number for this initial

gas condition based on the length of the shock tube was 0.0029. The piston was

started at Much 8.25 in order to create a Much 10 shock wave incident on the

end wall. After 9000 steps the number of particles was increased to 2.1 x 106

through particle cloning. This technique allowed the simulation to quickly build

up a respectable shock front and relaxation zone with a relatively small number of

particles. Since the process of interest was the reflection of the shock from the end

wall and the consequent motion of the reflected shock through the incident shock's

relaxation zone, the maximum number of particles were employed for this part of

the simulation.

Figure 7.5 presents the temperature and density profiles for the incident shock

wave just before striking the end wall (the fluid motion is from left to right). There

are about 2000 particles per ceU ahead of the shock and about 14000 particles per

ceU behind the shock. This solution was time averaged for 5 steps over which the

shock would have moved 0.25 ceU widths. The effect of this slight shock motion

during the time averaging interval is negligible. Values are normalized by the initial

conditions (that is, the conditions ahead of the shock in this figure) and distance

is measured from the end wall and normalized by the initial hard sphere mean

free path (as given by equation (7.3)). The Rankine-Hugoniot equations for frozen

conditions predict a temperature jump of 20.4 and a density jump of 5.7 for this

Much number. The translational temperature, which relaxes much faster than the

rotational temperature, does reach its predicted frozen temperature jump before

beginning to relax to its equilibrium value. The rotational temperature, however,

does not reach its frozen jump value because of its slower relaxation time. The

density is seen to rise quickly to its frozen jump value before beginning to relax to

equilibrium. The equiLibrium conditions for a shock wave at this Much number with

fuUy excited vibration correspond to a temperature rise of 15.9 and a density rise of

7.2 over the initial state. Because of the relatively low initial temperature (300°K)

of the simulated gas, the shock wave in the simulation was not sufficiently strong

to fully excite vibration. Consequently, the final equilibrium temperature is sLightly

128

25 ,

ts I

20 .. i.,._...........................
rl

...............................;............,,.,a,,,............._...Z...:.:..........li...............

I

'": -. :,

I

i "_7 t

... s'_,: : r !

5

I I 1 1 1 1 I I "_ d'l.
i i

-50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0

Figure T.5 Temperature and density profiles of s Mach 10 shock wave in carbon monoxide just
before striking the shock tube end wall. Values are normali_ed by the initial gas conditions. Flow

is from left to fight, distance is measured from the end wall in units of mean free path at the initial

conditions. -- p; T¢,; T, ot; T, ib.

tn

"'-_ 15

O"
"O

t_

_o

t..,

o
2;

higher than predicted and, for this same reason, the final equilibrium density rise

is slightly lower than predicted. The measured temperature and density rises are

16.8 and 6.7 respectively.

Figure 7.6 presents the temperature and density profiles for the gas in the shock

tube some time Mter the incident shock wave has reflected from the end wall. At

this instant the reflected shock wave is travelling upstream (from right to left) into

the equilibrium region behind the incident shock wave. Again values have been

normalized by the initial conditions and the solution was time averaged for 5 steps.

Because the gas ahead of the reflected shock has partially excited vibration,

it is not possible to calculate the frozen and equilibrium conditions behind the

129

5O

o_

.,..w

¢0

O'

_q
...q

L.

O
Z

45

40

35

30

25

20

15

10

5

0
-16 -14 -12 -10 -8 -6 -4 -2 0

x/&

Figure 7.6 Temperature and density profiles in a shock tube when the initial shock wave has

reflected from the end wail and is travelling upstream. The test gas is carbon monoxide. Values are

normalized by the initial gas conditions. _Flow is from right to left; distance is measured _rdm the

end wal] in units of mean free path at the initial conditions. -- p; Tr,; T, ot; T,_s.

reflected shock based on the initial conditions of the gas. If vibration were fully

excited by the incident shock the theoretical equilibrium temperature and density

rise over the initial conditions would be 31.9 and 29.7 respectively Since vibration

is not fully excited by the incident shock, the final temperature and density rise

are slightly higher and lower respectively. Since vibration is fully excited behind

the reflected shock wave, one can calculate the final eqnilibrium conditions there

using the observed equilibrium behind the incident shock. Doing this one predicts

an equilibrium temperature rise of 34.8 and a density rise of 27.6 respectively. As

can be seen from the figure these values are obtained to within a few per cent,

From figures 7.5 and 7.6 one can conclude that the simulation is reproducing the

130

correct frozen and equilibrium solutions for the gas. It is encouraging to see that

the simulation has captured the correct shock behavior for both the incident and

the reflected shock. The reflected shock is especially challenging not only because

of the extreme conditions which it produces in the gas behind it but also because its

behavior depends on the shape of the incident shock. Any errors generated in the

incident shock will be multiplied in the reflected shock. Note that the solution has

been generated employing only a uniform grid and that the problem is inherently

transient allowing very little time averaging of the solution and making any grid

fitting virtually impossible.

Having demonstrated the correct frozen and equilibrium behavior in the

simulated gas, it is instructive to investigate the relaxation process between these

two conditions. To do this it is most convenient to switch from a spatial to a

temporal coordinate system. Therefore, rather than examine the spatial behavior

of the gas at some instant in time we examine the temporal behavior of the gas at

some fixed location in the shock tube--the end wall being the obvious candidate.

Figure 7.7 presents the end wall density, translational temperature, and pressure

histories. The density and temperature histories are the values measured in the

last cell of the simulated shock tube, however the pressure history is the actual

momentum flux into the end wall. Because the number of particles striking the end

wall is much smaller than the number of particles in the cell next to the end wall,

this last history is subject to greater statistical fluctuation and therefore is noisier

than the histories measured from the cell. The values have been transformed in

the same manner as the shock profiles of the previous section, that is the initial

gas condition is mapped to zero and the final equilibrium condition is mapped to

one. Finally, the histories have been time averaged over 10 steps; this was necessary

primarily to smooth the end wall momentum flux history.

Not shown in figure 7.7 is the pressure calculated from the temperature and

density measured at the end wall cell. This history was omitted primarily to avoid

confusing the figure with too many curves especially since the pressure history

follows the end wall momentum flux history rather closely. However there is an

important difference between the two curves in that the rise in momentum flux

131

1.6

1.4

1.2
U}
_J

°_,_

-'-" 1

O' 0.8

°*=4

_ 0.6

I-i
o

Z 0.4

0.2

0

-0.2
0

I !

• "., .
• .°

2 i..................... :..÷,. _................ _................ •................ _...............................

: : s"

............... (.............. _.(............... _..i"............. (................ [................ I 4 !................ I

i : i _! i i i i i !

............... ;:...; j'...; ; ; ; ; : ;

i / ! / _ i i i i i !
: : : , : : ! ! : : ! iill ii; ,* : I : Z : : : : :

I I I I I I I I I

200 400 600 800 1000 1200 1400 1600 1800 2000

Time Step

Figure ?.7 Temperature, density, and momentum flux histories at the end wall before and

immediately following the reflection of the incident shock wave. The test gas is carbon monoxide.

Values have been transformed such that the initial gas conditions map to sero and the final
equ_brium conditions map to one. Time is measuzed in units of time steps in the simulation.

One time step corresponds to 4.5 x 10 -a mean collision times at the initial gas conditions, or 0.241

ns for an initial gas temperatuze of 300°K and pressure 267 Pa (2 mm Hg). -- momentum flux; - -
- - p; Tt,.

leadJ the rise in pressure in the end wall cell. The reason for this is best understood

by thinking of the pressure history as lagging the momentum flux history. Consider

that the rise in temperature and density in the end wall cell are caused in sequence

_y the arrival of the incident shock and the passing of the reflected shock. However

at the end wall itself these processes axe occurring simultaneously, therefore one

would expect the state measured in the end wall cell to react more slowly than

that measured exactly at the end wall. Other than this small separation during the

reflection process, the pressure and end wall momentum flux histories axe identical.

132

Therefore one can conclude that the end wall cell is sufficiently small to capture all

the gradients in the solution.

Unfortunately these results cannot be compared with experiment because the

simulation assumes a constant vibrational collision number throughout the flow

field. From equation (7'4), for an initial gas temperature of 300°K, one expects

a vibrational collision number of 780 behind the incident shock and 46 behind the

reflected shock. This order of magnitude difference between the two relaxation times

means that in a real gas the relaxation zone behind the reflected shock is extremely

short and one can assume equilibrium conditions are reached instantaneously.

Consequently, the state of the gas behind the reflected shock is dependent only

on the state of the gas ahead of the shock, therefore the relaxation behind the

incident shock can be studied by monitoring the the conditions behind the reflected

shock. In our simulated gas the relaxation times are equal on either side of the

reflected shock, therefore the state of the gas at the end wall is a function both

of the reflected shock's motion through the relaxation zone ahead of it and the

reflected shock's own relaxation zone.

The use of a fixed vibrational collision number throughout the flow field is a

major limitation of the current internal energy model. The reflected shock problem

would be an ideal one to use in the study of more realistic models employing a

variable collision number. Perhaps the simplest realistic approach would be to

define a probability for vibrational energy exchange in a collision of the same form

as is employed in the derivation of the Landau-Teller model. That is (cf. Hansen

(1983)),

where Pv is the probability of vibrational energy exchange, g is the relative speed

for the colliding molecules and g* is a characteristic relative speed for the molecules.

It is not clear at this time, however, that the current model for vibrational energy

exchange would be consistent with such a scheme. Recall that the vibrational energy

in obtained through the quantization of a Boltzmann distribution at the local gas

133

temperature. In the current mode] the rotational energy of the molecules is used to

define this distribution. Because the decision to allow vibrational energy exchange

is made independent of the colliding particles (that is, a fixed collision number is

used), the rotational energy in the particles involved in vibrational energy exchange

must represent a Boltzmann distribution at the local gas temperature. However, if

the decision to allow vibrational energy exchange is made based on some function

of the relative speed of the colliding particles, the distribution for the particles

involved in such collisions becomes biased towards the higher energies (which is the

purpose of incorporating a rule such as equation (7.5)) and the rotational energy of

these particles can no longer be assumed to represent a Boltzmann distribution at

the local gas temperature.

Certainly the idea of employing variable collision numbers in Monte Carlo

simulations is not new. Davis, Dominy, Harvey and Macrossan (1983) describe

a model for variable rotational collision number, and more recently Boyd (1989)

presented a model for both variable rotational and vibrational collision numbers.

For vibration Boyd used a form similar to equation (7.5) but including a factor

to account for power law potentials (which the original Landau-Teller derivation

neglects). However, these additional complexities seem to have little appreciable

effect on most single shock calculations probably because single shock flows can be

adequately modelled by a single relaxation time.

7.3.2 Isothermal End Wall

The results presented in this subsection were created by running the simulation

under conditions identical to those employed in the ideal end wall results but with an

isothermal end wa_ boundary condition. This gives a more accurate representation

of the flow as encountered by experimentalists investigating the shock reflection

process. The major difficulty with implementing such a boundary condition is in

reproducing the correct collision frequency in the boundary layer created at the end

wall. Consider that for the ideal end wall the temperature at the end wall can be

as much as 40 times the initial gas temperature. The isothermal boundary fixes the

134

end wall temperature at the initial gas temperature, therefore the boundary layer is

very cold compared to the gas behind the reflected shock. Consequently, the density

through the boundary layer is very high and conditions within the boundary layer

are more accurately represented by a continuum description of the gas.

For the results of this subsection the end wall was modelled as isothermal with a

thermal accommodation coefficient of 0.9. The thermal accommodation coefficient,

_, is denned as (cf. Patterson (1956))

- E,
a -- Ei _ Ew (7.6)

where Ei is the translational energy of a particle incident on the wall, Er is the

translational energy of the particle reflected from the wall, and JEw is the "energy"

of the wall, that is, the wall temperature converted into an equivalent energy.

The thermal accommodation coefficient is used to account for the observed

difference between the temperature of particles emitted from the surface and the

temperature of the surface. This difference is attributed to insufficient contact

between the impinging molecules and the surface, and should not be confused with

the temperature jump (cf. Patterson) which exists between a gas and a diffusely

reflecting surface. The temperature jump is predicted by kinetic theory and is

due to the temperature of particles impinging on the surface being higher than

the temperature of the gas. Recall that the temperature of a gas is given by the

variance of the velocity distribution of molecules in the gas. For a gas in equilibrium

this distribution is a MaxweU-Boltzmann distribution and is different from the

distribution for the molecules impinging on a surface. This latter distribution,

for a gas in equilibrium, will be just the positive half of the Maxwell-Boltzmann

distribution. Therefore the wall is continually robbing the gas next to it of the

molecules from the positive half of the velocity distribution, hence the gas next to

the wall is observed to have a lower temperature than the wall.

The use of a thermal accommodation coefficient is necessary for this problem

because neither the required collision frequency nor the necessary density in the

boundary layer can be sustained by the simulation. Consider that the mean free

135

path, _, for molecules in a gas scales as

_._2_ ni (T2_,_-11_ (7.7)-
where n is the number density, T is the temperature, and w is the exponent in the

temperature dependence of the viscosity coefficient for the gas. At the end wall

the temperature will remain constant given an isothermal boundary, therefore the

mean free path will vary inversely with the density. Assuming the pressure remains

constant through the boundary layer, then for a fully accommodating end wall where

the temperature remains fixed at the initial gas condition the density rise at the end

wall must equal the pressure rise. For the ideal end wall calculation of the previous

subsection the pressure rise was about 950, therefore with a fully accommodating

end wall the mean free path would be 1/950 of the initial gas mean free path and

the number density should be 950 times the initial value. It becomes impossible

to reproduce the correct collision frequency and the gas at the end wall cannot be

fully thermalized. More importantly, the required density cannot be obtained from

a shock tube which is 1022 cells in length. The observed simulation result is that

the incident shock does not reflect from the end wall and all the incident gas is

swallowed into the boundary layer.

By allowing incomplete thermal accommodation the wall influence is reduced

since particles are allowed to retain some of the energy with which they impinge

on the surface. Therefore the temperature of the gas at the end wall cell is not

as severely constrained and the density rise through the boundary layer becomes

manageable.

Figure 7.8 presents the density, temperature, and pressure profdes for the gas

in the shock tube some time after the incident shock wave has reflected from the

end wail. Note that the rotational temperature has been omitted in order to avoid

cluttering the figure. At this instant the reflected shock wave is travelling upstream

(from fight to left) into the equilibrium region behind the incident shock wave.

Values have been normalized by the initial conditions except for the pressure profile

which has been normalized by a value ten times the initial pressure. The solution

136

300

250 ...

t_

"_ 200 ...

o,.q

¢2t
•.¢, 150 ...

,=.q

o 100 ..
Z

....-o" i............ "'" "

i ./-4........-::-::,;,
:::::::::::::::::::::::::::::::: i

l I I I

-10 -8 -6 -4 -2 0

z/A

Figure 7.8 Temperature and density profiles in a shock tube when the initial shock wave has

reflected from a cold, isothermal end wall and is travelling upstream. The test gas is carbon

monoxide. Values are normalized by the initial gas conditions except for pressure which is normalized

by a value equal to ten times the initial gas pressure. Flow is from right to left; distance is measured

from the end wall in units of mean free path at the initial conditions. _ 0; Tt, ; T,,b;

-o---,- p.

was time averaged over 5 steps.

The interesting feature in figure 7.8 is the presence of a boundary layer at the

end wall. Clearly the flow external to the boundary layer is behaving in the manner

predicted for the ideal end wall. However the cold end wall is cooling the gas over

several ceils and producing a very high density gradient through the boundary layer.

An unexpected result is the slight perturbation in the pressure through the boundary

layer. This is an error resulting from insufficient collisions of particles in this region.

The gas is so dense and temperature so low that the required collision frequency

137

is not reproduced by the simulation. Consequently the hot particles from behind

the reflected shock do not thermalize with the particles emergent from interaction

with the end wall thus leading both to a higher temperature and to a higher density

than would occur with complete thermalization. This was confirmed by running

the simulation at double the initial gas Knudsen number such that the required

collision frequency for the cells in the boundary layer was roughly halved. The gas

conditions next to the end wall were still too close to continuum for the simulation to

reproduce the necessary collision frequency, however the pressure perturbation did

not occur until further into the boundary layer at the point where the probability

of selection for the candidate collision pairs was exceeding unity.

Figure 7.9 presents the temperature, density, and pressure history at the end

wall. As with figure 7.7, the density and temperature correspond to those sampled

from the end wall cell whereas the pressure is the actual momentum flux into the end

wall. In order to present all three histories in one figure it was necessary to perform

some unusual scaling. The density is normalized by twice the initial density, the

temperature is normalized by one tenth the initial temperature, and the pressure is

normalized by ten times the initial pressure. Clearly the density and temperature

histories are strongly affected by the cold end wall, however the pressure history is

very similar to that of the ideal end wall. Note however that the pressure is upwards

of 1200 times the initial value although the equilibrium pressure should be about

950 times the initial value. As discussed above, the hot particles from behind the

reflected shock are not thermalizing with the particles emergent from the cold end

wall. The end wall naturally is more sensitive to this error because the measured

flux consists primarily of those hot particles directed towards the wall.

Perhaps the most important result from the isothermal end wall calculation for

the shock reflection problem is the realization of the limits of the particle simulation

•method. Clearly the conditions in the boundary layer next to the end wall are

well into the continuum regime where a particle simulation is hard pressed to

provide meaningful results. The shock reflection problem is an extreme example

of a more general difficulty which exists with the simulation of any hypersonic

rarefied flow that develops a cold boundary layer. The cooling of the gas through the

138

160

14o..

120 ... S"
J

f_

s

_J

40 f e/'jj/ fir /'/ */f

0 _
0 500 1000 1500 2000 2500

Time Step

Figure 7.9 Density, temperature, and momentum flux histories for a cold, isothermal end wall.

The test gas is carbon monoxide. Density is normalized by twice the initial value, temperature is

normalized by one tenth the initial value, and momentum flux is normalized by 10 times the initial
value. -- momentum flux; p; Tt,.

b_

o_

"'.-. 100

CY
-_ 80

tq
,¢.q

60
o

Z

boundary layer may raise the density to values far greater than can result from shock

compression thus requiring a larger investment of particles for the boundary layer

than for the stagnation region of the flow. It would be more profitable to employ a

less computationally intensive method for modelling the velocity distribution in the

boundary layer such that more particles may be used elsewhere in the flow. Because

of its one dimensional nature and well defined boundary layer, the shock reflection

problem would be an ideal one for the development of such a hybrid scheme.

139

7.4 Double Ellipse in Hypersonic Flow

The previous sections have dealt with simple geometries and focused on very

specific gas dynamic problems in order to demonstrate the capability of the method

for properly simulating real gas flow phenomena. In this section the method

is applied to a more complex geometry both to demonstrate the capability of

simulating flows over general bodies and to compare the current implementation

with the implementation of this method on the Cray 2.

The geometry of interest in this set of results is a double ellipse body similar to a

proposed profile for the nose and cowl of the Hermes Space Shuttle. The geometry

for this simulation was created by Feiereisen using the body generation scheme

described in Feiereisen and McDonald (1989). The geometry in three dimensions

consists of two intersecting ellipsoids extended by a truncated cylinder with a back

plane. The two dimensional profile of this geometry was used for the simulation.

The computational domain extends 180 cells in the z direction (the streamwise

direction) and 250 cells in the y direction for a total of 45000 cells. The body is 90

cells in length and 50 cells in width at the back plate and is at a 30 degree angle of

attack.

The free stream gas temperature for the calculation was 13.5°K and the body

was at a fixed temperature of 620°K. Complete accommodation was assumed. The

free stream mean free path was 0.105 mm and the free stream Mach number was

25. The Knudsen number, based on a body length of 0.076 m, was 0.0138 and the

corresponding Reynolds number was 2700. A hard sphere interaction potential was

assumed and no vibrational energy exchange was allowed. This was done in order

to allow comparison with the Cray 2 calculation (Feiereisen (1990)) which employed

this simplified model. The simulation was started with a total 2.6 x 105 particles

including the reservoir, and run for 1200 steps to clear the transient. This number

was then raised to the maximum of 2.1 x 106 through three clonings extended over

a period of 100 steps to ensure any statistical dependencies from cloning were lost.

The solution was then created by time averaging over 800 steps.

Figure 7.10 presents the density contours for the flow field. Values are

140

normalized by the free stream conditions. The relatively low Knudsen number

of the flow puts it near the continuum regime hence the bow shock is very sharp

and thin. Contours are mapped for normalized densities of 0.2, 0.8, 1.2, 3.0, 6.0,

and 9.0. This last value is reached only near the surface of the body where the gas

has been cooled by the isothermal wall. The effect of this boundary is more clearly

evident in figure 7.11 which presents the density along the stagnation streamline.

The o's in this figure correspond to the values calculated with the current code and

the x's correspond to the values calculated by Feiereisen with the Cray 2 code. The

stagnation point is at the right hand side of the figure. The stagnation density is

14 times the free stream density, and the boundary layer extends for about 3 cells

from the surface. There is almost a merging of the shock and boundary layers. The

agreement with Feiereisen's results is remarkably good.

Figure 7.12 presents the temperature contours for the flow field. Again values

have been normalized by the free stream temperature and contours are mapped for

normalized temperatures of 1.2, 20, 40, 60, 80, and 100. The effect of the second

ellipse (the "cowl") is clearly evident in the flow field over the body. There is almost

a second shock formed and there is a temperature rise due to the compressive effect

there. The density field does not display this compression quite as clearly, largely

because the flow is sufilciently rarefied in this region to wash out much of this

effect. The temperature, being a higher order moment of the solution, is a much

more responsive variable to observe.

The cooling due to the body is also clearly evident in the figure. After

being shocked to a high temperature the gas rapidly cools through a thermal

boundary layer near the body. Figure 7.13 presents the temperature along the

stagnation streamline. The peak temperature of 1850°/((140 times the free stream

temperature) is reached about 5 mm from the surface of the body. Note that this

is about half way through the bow shock defined by the density and this peak

temperature corresponds to the characteristic translational temperature overshoot

in a shock wave. The stagnation region in the flow is too small to compressively

heat the gas behind the shock and the rapid drop in temperature following the peak

is due both to the relaxation of the translational temperature after its overshoot

141

250

200

150

100

50

50 100 150

Figure T.IO Density contours in the Mweh 25 flow over s double ellipse geometry. Contours are
mapped for normalized densities of 0.2, 1.2, 3.0, 6.0, and 9.0. Values are normalised by the free
stream conditions.

within the shock and to the cooling effect of the body. Note that Feiereisen's

solution (the x's in figure 7.13) show a lower peak temperature corresponding to

less overshoot in the translational temperature. Feiereisen's calculation employed

the degree of freedom mixing collision algoritlma which has an effective rotational

collision number of about 2 whereas the current calculation employed the direction

cosine decomposition collision algorithm with a rotational collision number of 5.

This explains the difference in the computed temperature profiles through the bow

shock. The agreement through the boundary layer is excellent.

Figure 7.14a presents the velocity field for this flow. The boundary layer is

clearly evident as is the turning of the flow about the end of the body. The meeting

142

14

t-

¢a

o
z

12

10

6

4

2

X

Distance from Surface (mm)

Figure 7.11 Density along the stagnation streamline. Values are normalized by the free stream
conditions. Solid line with 'o' symbols are used for the current results, 'x' symbols are used for the
calculation by Feiereisen (1990).

of the flow over the body with that under the body normally would lead to a wake

shock, however the extremely low densities in the wake for this flow preclude any

evidence of such a shock. It is of interest to investigate more closely the "cusp"

region where the nose and the cowl meet. Figure 7.14b is an expanded view of this

region. The theory predicts a region of reeirculation for such a geometry when the

adverse pressure gradient from the cowl is sufficiently strong to force the boundary

layer to separate. There is no evidence of separation in this figure, although there

definitely is a growth in the boundary layer thickness after the cusp and the region

right at the cusp is virtually stagnant. It is interesting to note from this figure that

there is a small dip velocity at the surface. This is predicted by kinetic theory (cf.

143

250

200

150

100

50

50 100 150

Figure T.12 Temperature contours for Msch 25 flow over s double ellipse geometry. Contours are
mapped for normalised temperatures of 1.2, 20, 40, 60, 80, and 100. Values s_e normalized by the
free stream conditions.

Patterson (1956)) when the mean free path is of the same order as the boundary

layer thickness. This slip velocity is due to the flux of particles incident on the

surface. On average, molecules strike the surface with the momentum existing at

one mean free path from the surface. H the mean free path is of the same order as the

scale to which one is resolving the solution, then one expects to see this momentum

in the flow. Therefore, although the diffuse reflection at the surface ensures that

particles leaving the surface have no net momentum, the flux of particles onto the

surface does have momentum which gives rise to a net velocity for the gas at the

for completeness, figure 7.15 presents the velocity

144

profile in the

2000 T

1800

1600

1400

1200

1000

800

600

400

200

0
-1.8

!x

Distance from Surface (mm)

Figure T.15 Temperature along the stagnation streamline. Values are given in degrees Kelvin.
Solid line with 'o' symbols is used for the current results, 'x' symbols axe used for the calculations

by Feiereisen (1990).

stagnation streamline. Again the current results agree quite closely with those

from the Cray 2 implementation. The slight differences which exist are probably

attributable to the different collision algorithms employed. It should be noted

that these Cray 2 calculations are somewhat of an anachronism and the latest

implementation uses the direction cosine decomposition collision algorithm.

In conclusion, the implementation of the Stanford particle simulation method

on the Connection Machine is capable of solving the flow field about a general two

dimensional geometry to a high degree of accuracy. That the solution for the double

ellipse geometry compares favorably with that calculated by the implementation

of this method on the Cray 2 indicates there is consistency between the two

145

220

210

200

50 100 150 2_

(b)

Figure 7.14 Velocity field for Math 25 flow over a double ellipse geometry, a) The complete flow
field, b) The flow field in the vicinity of the cusp where the two eUipses meet.

146

1.2

8

o
Z

1 = =i = = ::= = =i = = _ ; _ :::...................:....................................

i i i i ! x ! !

0.8 _ i i i :: x:: i i

0.6

0.4

0.2

0 , i , , , , ,
• .8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0

Distance from Surface (ram)

Figure 7.15 Velocity along the stagnation streamline. Values are normalised by the free stream
conditions. Solid line with 'o' symbols is used for the current results, 'x' symbols are used for the
calculations by Feiereisen (1990).

implementations. The results presented in the two previous sections serve not only

to validate the current implementation but also the method in general. The next

section will consider in some detail the performance of the Connection Machine

with this method.

7.5 Performance

In Chapter 1 of this thesis the motivation for the research was described through

the question: "What price for parallelism?" The answer to this question is given

in this section. The first step towards answering this question is to consider the

147 _

distribution of computational time within the algorithm. This distribution is as

follows:

1) move -- 14%

2) rank -- 40%

3) re-order _ 26%

4) collisions _ 7%

5) sampling- 13%

Within thls breakdown, the rank and re-order represent two communications

intensive events which have no equivalent in the vectorlzable algorithm yet account

for 66% of the computational time in the data parallel algorithm. This is time

being spent on events which are necessitated by the parallel architecture and are

not directly related to the computation required in a particle simulation. Therefore

one can say quantitatively that the price for parallelism amounts to two thirds of

the cost Of the calculation.

It should be emphasized that this fraction remains constant when the calculation

is scaled clown to 16k or 8k physical processors. Therefore it is reasonable to expect

that in scaling up to a greater number of processors this fraction will continue to

remain constant. The property of scalability is extremely important in evaluating

parallel architectures. In many of the MIMD architectures one often finds a less

than linear speed up with increasing number of processors because the fraction of

time spent on communication increases in going to more processors. That the cost

of communication in the particle simulation is scaling linearly on the Connection

Machine is a good indication that on future machines with more processors the

performance of the simulation will improve linearly.

It is of interest also to see how the performance of the simulation scales with

the number of virtual processors. Figure 7.16 presents the computational time as a

function of virtual processor (VP) ratio. The values are normalized by the time at

a VP ratio of 8, the lowest for which measurements were reasonable with the double

ellipse problem of the previous section. Since the VP ratio is directly proportional

to the number of particles in the simulation, one would expect the time to increase

linearly with the VP ratio. The dashed line in the figure is an extrapolation of the

148

i

s
-_ 5
¢.
0

*.J

4

L_

.N
m

3

0
Z

2

1
0

• IJ'JJ" !

s • o i

....................... i........................_....................... i..........2": _........................i........................i......................

** _ s I : : :

iiii iiiiiiii
10 20 30 40 50 60 70

Virtual Processor Ratio

Figure 7.16 Performance of the simulation as a function of virtual processor (VP) ratio. The
dashed line gives the linear extrapolation of performance at VP ratios of 8 and 16. The actual

performance is better than predicted by linear extrapolation because of the inefficiencies associated
with lower VP ratios.

computational time based on the slope between the points for a VP ratio of 8 and a

VP ratio of 16. This dashed line emphasizes that most efilcient use of the machine

is made at the higher VP ratios for the reasons outlined in Chapter 2.

In order to determine if the 66% paid for parallelism is too steep a price, it

is necessary to benchmark the performance of the simulation on the Connection

Machine. The code used to generate the results of the previous section was written

fully in C/Paris and run on the 32k processor Connection Machine Model 2 at the

NASA Ames Research Center. The front end used to run this simulation was a

DEC Vax 8800. The simulation employed 2048k virtual processors with a total of

256 MB of memory to simulate up to 2.0 x 106 particles in the flow and a further 105

149

particles in the reservoir. To compare the performance of this implementation with

that of a similar implementation on a different supercomputer it is useful to define a

normalized time for the calculation given as the average time to advance one particle

through one time step. Excluding the reservoir particles, for the calculation of the

double ellipse that value is 2.0psec/particle/timestep. The same calculation fully

vectorized on a single processor of the NA$ Cray 2 took 1.Tpsec/particle/timestep.

It should be noted that the Cray 2 calculation was three dimensional even though

the double ellipse geometry is two dimensional. Nonetheless, it is apparent from

this result that the 66_ price of parallelism is being paid off through the great

computational speed of the Connection Machine.

The final evaluation which needs to be made in judging the Connection Machine

concerns the human effort required to program it. The discussion in section 2.1

on data parallel versus vectorizable algorithms is a good basis for this evaluation.

Because the requirements for a data parallel algorithm are stricter than for a

vectorizable algorithm, programming the Connection Machine is inherently more

difficult than programming a vector computer. The current situation is probably

worse than is implied by this statement because data parallel programming is

relatively new and many of the algorithms which have been fully explored in

vectorizable form have yet to be considered for data parallel form. Therefore one can

expect that as a tradition of data parallel programming evolves there will develop

a greater "intuition" for data parallel algorithms and many of the tasks which now

are new and require some effort to conceptualize in data parallel form will have

become routine and part of the data parallel diction.

Beyond the straight algorithmic considerations there is the question of how

detailed a knowledge of the machine is required for efficient programming. From

the discussion in section 2.4 and most of chapters 4 and 5 it should be abundantly

evident that the promise of "general" communication is a myth for the Connection

Machine. Although one can classify all communication which makes explicit use of

the router as "general", it is incorrect to assume that all such communication comes

at the same price. It is very difficult to make educated guesses at the particular

cost for any communications event in a proposed algorithm; for the most part

150

all variations in an algorithm have to be implemented before an optimum can be

selected. There is no well defined hierarchy of memory as exists in conventional

computers because memory access times through the communications network are

dependent on a large number of variables. Through experience it is possible to gain

some intuition for the performance of communications but this certainly requires an

effort which is unnecessary in programming conventional or even vector computers.

Again part of the problem may be attributed to the infancy of this technology and

in the future much of this effort may be unnecessary as the technology matures and

languages and compilers for this architecture improve.

r-

151

Chapter 8

Multiple Species and Chemistry

The work presented thus far has resulted in a particle simulation capable of

simulating a single specie diatomic gas in hypersonic flow with no chemical reactions.

This is the foundation upon which algorithms for simulating multiple species with

chemical reactions can be built. This chapter outlines how these algorithms may

best be implemented on the Connection Machine and identifies possible problems

one may encounter in carrying out such work. It should be emphasized that none of

the algorithms described in this chapter have been implemented on the Connection

Machine and the purpose of this chapter is only to serve as a guide in this area.

8.1 Reaction Fundamentals

Atmospheric air subjected to hypersonic conditions can be modelled as a

five species set composed of O2, N2, NO, O, and N. There are 15 dissoci-

ation/recombination reactions and 4 exchange reactions associated with this set

(Moss and Bird (1985)). In addition there are 15 allowable collision classes where a

collision class is defined by any combination of two species. The collision selection

rule for multiple species must account for the different number densities and the

different sample sizes for each collision class within a given cell. Once a collision has

152"

beendecided upon the colliding pair must be tested to see if it will undergo reaction.

Each reaction is characterized macroscopically with a reaction rate coefficient,

kf(T), and a species concentration coefficient, K(T), as fit by experiment. In a

particle simulation, a distinct selection rule must be implemented for each reaction

in order to reproduce the macroscopic reaction rate temperature-dependence. Pairs

of particles which do not react undergo a regular thermal coUision.

Dissociation reactions are characterized by the general equation

AB + X ---. A + B + X (8.1)

where AB is a diatomic molecule, A and B are monatomic particles, and X is a

partner of any type. Only collisions with collision energy exceeding the threshold

dissociation energy, E d, are allowed to dissociate. Dissociation reactions are

endothermic and the energy removed from the reactants would, in a real collision, be

redistributed in the electron configuration of the products. In a particle simulation

the electronic state of a particle is not usually modelled since it does not contribute

energy in a collision. Consequently the dissociation energy must be removed from

the system. Note, however, that the reverse reaction is exothermic therefore, at

equilibrium, this energy is returned to the system at the same rate it is removed.

Exchange reactions are characterized by the general equation

AB + C AC + B (8.2)

where (7 is a monatomic particle. This reaction also requires the splitting of

a molecule and therefore can only proceed if the collision energy exceeds the

dissociation energy. However the reaction also results in the creation of a new

diatomic molecule which allows the release of energy Ed,,,. That is, the dissociation

energy for the revers e reaction must be returned to the system. Therefore the

reaction requires energy AE = E,/- Ed,,, to be removed from the reactants and

redistributed as potential energy in the products.

Recombination is the reverse of dissociation; it is inherently a three-body

process but can be modelled by two successive binary collisions. The first collision

153

requires two colliding atoms to form an unstable union characterized as a mutually

orbiting pair. Therefore,

A + B _ (AB) (8.3)

where (AB) is the orbital pair formed from atoms A and B. Orbiting pairs have a

limited lifetime dependent upon the collision energy. If an orbital pair undergoes

a collision within its lifetime it may then stabilize into a molecule thus completing

the recombination process. This process is modelled by the equation

(AB) + X _ AB + X (8.4).

The dissociation energy, Ed, removed from the reactants in (8.1) must now be

returned to the products of (8.4). If no stabilizing collision occurs during an orbital

pair's lifetime then the pair is split into its free atoms.

8.2 Implementing Multiple Species

The first step towards chemical modelling in the simulation is to introduce

the capability for simulating multiple species. The different species which may be

encountered in simulating the flow of a gas may be broadly classified into three

categories: monatomic particles, dlatomic molecules, and orbital pairs. The last of

these three is only encountered when modelling recombination reactions and will be

discussed more fully in the section on chemistry. This section concerns itself only

with the implementation of multiple species without chemical reactions.

The introduction of multiple species necessitates the specification of additional

information concerning the different species. The actual number of species which

are usually modelled is relatively small; hypersonic flows involving air are commonly

modelled with a total of 5 different species, although the inclusion of recombination

reactions requires an additional three species for the orbital pairs. This information

is best stored in the front end computer, and the Connection Machine processors

154

representing the particles need only store a pointer to the appropriate table entry.

The broadcast of information from the front end to the individual processors is

very fast in comparison to either NEWS or general router communication. For

the processors to get the species information from the front end it is necessary

only to identify the processors representing particles of each species and copy the

appropriate front end information into the processors. Information pertaining to a

collision class may be stored in the same fashion. For the 8 species model there are 36

possible collision classes. This number is still small enough to make broadcasting

from the front end a viable communications alternative for information which is

strictly dependent only on the collision class. A problem arises when the necessary

information is dependent not only on the collision class but also on the cell in the

simulation, as with the determination of the collision class sample size discussed

below.

If there is to be no chemical reaction the only additional information necessary

for the calculation is the species mass and the collision cross section. The cross

section is necessary in evaluating the probability of selection, Pj, for the candidate

pairs. With multiple species, the probability of selection for collision of a particular

candidate pair of particles, the first of specie a and the second of specie b, is given

by (McDonald 1990)

nanb _ -2 _..A_ .

P" = (1 (8.5)

where na and n b are the number densities for specie a and specie b respectively, $ab

is the Kronecker delta, Sab is the sample size of candidate pairs in class ab, fld2 b

is the hard sphere collision cross section, g is the relative speed, nab is the power

defining the power-law interaction potential, and At is the time step.

The greatest difficulty one encounters when evaluating this expression is in

determining the values of ha, n b and Sab. For the single specie case, the sample

size is always n/2 and determining n requires two scan instructions, that is,

a CH_enumerate followed by a CH_scan_with_copy. The most straightforward

approach for multiple species is to extend this directly, then for an 8 species model

155

one would require 16 scan instructions to determine the values of na and n b and an

additional 70 scan instructions to determine the value of ,.,Cab. Note that these 70

scans would be across candidate pairs and could be carried out at half the VP ratio of

the particles' VP set by using VP alia.sing. Therefore they would be approximately

equivMent to 35 scans at the higher VP ratio.

In practice a large fraction of all the coUisions will fall into one of five classes.

Specifically the three classes involving O2 and N 2 are most common in the free

stream and the two additional classes involving O and N2 are most common after

the shock where most of the O2 molecules have dissociated. Therefore the 70

scan instructions necessary for determining Sab may not be overly expensive since

many of the collision classes are sparsely populated and hardware contention in the

communications would be reduced. This sparsity may be used to some advantage

in reducing the communications by employing a different algorithm for determining

the sample sizes in the less common coUision classes. In such an approach one

first determines the sample sizes associated with the five most common coUision

classes by using the necessary scan instructions. Then to get the sample sizes for

the remaining classes one employs a multi-grid algorithm similar to that described

in Chapter 4. One creates a multi-grid with elements for each ceU in the simulation

and with a level for each remaining collision class. Therefore each remaining collision

class is mapped to a level of the multi-grid and each ceU in the simulation is mapped

to an element in a level of the multi-grid. One processor from each candidate

coUision pair then uses the CM_send_with_add instruction to send a value of 1 to the

appropriate grid element in its 1eve1. This results in each element in a particular

level of the multi-grid storing the sample size for the collision class associated

with that level. The same processor in the candidate pair then uses the CM_get

instruction to get this value from the multi-grid. This algorithm takes advantage of

the fact that the performance of general communication can improve dramatically

with a reduction in router contention. Therefore this approach is suitable if it can

be determined that over the whole flow field certain coUision classes are greatly

dominant leaving the remaining collision classes relatively sparse.

With the various factors comprising (8.5) made available, the probability of

156

selection is evaluated and the decision to collide a candidate pair is made. If there is

no chemical reaction, then the next step is to carry out the appropriate collision me-

chanics. The introduction of three classes of particles necessitates the specification

of three types of collision, specificany monatomic-monatomic, monatomic-diatomic,

and diatomic-diatomic. Note that orbital pairs do not undergo collision as such and

must either split into separate atoms or stabilize into diatomic molecules before

undergoing coUision. The mechaaics of each of these three types of collisions are

identical to those already implemented. The diatomic-diatomic collision mechanics

are covered in Chapter 3; the monatomic-monatomic and the monatomic-diatomic

collision mechanics correspond to the diatomic-diatomic collision mechanics with no

exchange of internal energy. Therefore the introduction of multiple species does not

require the specification of new collision mechanics; the conision mechanics already

specified for the single specie diatomic particle simulation can be employed with

only the introduction of the appropriate switch for the different particle classes.

8.3 Implementing Chemical Reactions

The addition of chemical reactions amongst the multiple species introduces

no new communications problems. Once the decision to coUide a pair has been

made, the information necessary to decide on a reaction is strictly dependent on

the species involved in the coUision. This information can be stored in the front

end and accessed very efficiently as described in the previous section. This is one

of the few situations in the particle simulation algorithm where the amount of

arithmetic computation is likely to exceed the communications. The probabilities

which must be computed for deciding on a reaction are given by complicated

expressions involving several transcendental functions potentially making this is

an ideal situation for the Connection Machine since it allows its floating point

performance to be put to full use.

8.3.1 Reaction Mechanics

The three types of reactions, dissociation, exchange, and recombination, were

157

described in the first section of this chapter. Figure (8.1) presents a flow chart for

the collision process when these reactions are included (Haas (1990)). Note that

recombination is modelled by a two step process therefore there are two branches

in the flow chart for recombination. The mechanics associated with reactions are

carried out only after a candidate pair has been accepted for collision. The selection

rule for accepting candidate pairs has to be modified as described in the previous

section to allow for multiple species.

Reaction types are identified on the basis of the participating particles.

Dissociation reactions are allowed with all collisions of two diatomic particles or with

half the collisions involving a diatomic and a monatomic particle. The other half of

the collisions involving a diatomic and a monatondc particle may lead to exchange

reactions. Collisions involving an orbital pair may lead to recombination reactions

and collisions involving two monatomic particles always lead to the formation of an

orbital pair, the first step in a recombination reaction. The calculation associated

with each of these reactions must be carried out independently.

Dissociation reactions are allowed to occur with probability Pd given by (Haas

(1990))

]

Pd= P0(1- _ 1)P (8.6)

where e is the ratio of the collision energy to the dissociation energy, and P0, PI and

P2 are constants dependent on the species. The collision energy must be known

in all collisions and is calculated for all colliding pairs. The reaction constants

are stored in the front end and broadcast to the processors. This probability is

evaluated for all collisions which are allowed to lead to the dissociation of a colliding

particle. The dissociation of a particle requires the creation of a new particle and

the redistribution of the post-reaction energy. The creation and destruction of

particles deserves special attention and the discussion of these processes is given in

the following subsection.

The probability for the occurrence of an exchange reaction is of the same form as

equation (8.6). Exchange reactions neither create nor destroy particles; the outcome

158

CANDIDATE

PAIR

,/

Reaction
Types

1

Reaction
Selection

t
N. / \/

Reaction
Mechanics

I

AB + CD

AB +C

ACCEPT

AB

ACCEPT

ACCEPT

REACTION

STABILIZE

(AB)

SPLIT PAIR

(AB)

A+B

:[FORM PAIR[(AB)

_1 NO
- [COLLISION [

Figure 8.1 Flow chart for the collision process with the inclusion of chemical reactions. Four

distinct reaction types axe Mlowed based on the classes of paxtides participating in the collision.

(Haas(1990))

is strictly a redistribution of energy and alteration of species. Exchange reactions

are considered for half the collisions involving a monatomie and a diatomic particle

thus leaving the other half of these types of collision to be considered for dissociative

reactions. The split is made arbitrarily on the basis of the class of the first particle

in the pair. If this particle is diatomic then the pair is considered for a dissociation

reaction whereas if this particle is monatomic then the coRision is considered for an

exchange reaction.

159

The probability Pr for the occurrence of a recombination reaction is given by

(Haas (1900))

e, = (8.7)

where eint, 0 and eint, 1 are the internal energies for the orbital pair and the collision

partner respectively, and P3, P4 and P5 are constants dependent on the species. The

probability given by equation (8.7) is evaluated for all collisions which involve an

orbital pair. If the partner is monatomic then the probability of reaction is based

only on the internal energy of the orbital pair, in other words ein_, 1 is set to unity.

If a collision leads to recombination then the orbital pair involved in the collision

is stabilized to its diatomic equivalent. If recombination does not occur then the

orbital pair is split into two monatomic particles of the species defining the pair.

As with dissociation reactions, this requires the creation of a new particle. For

reasons of efficiency it is best to create all new particles at the same time, therefore

new particles resulting from split orbital pairs are created at the same time as new

particles resulting from the dissociation of diatomic particles.

Any collisions involving two monatomic particles always lead to the creation of

an orbital pair and the corresponding destruction of a particle. The creation of an

orbital pair is the first step in a recombination reaction therefore it is not, strictly

speaking, a fourth type of reaction. However, for the modelling of chemistry in a

particle simulation it is convenient to view this process as a distinct reaction since

it must be carried out separately from the other three processes.

8.3.2 Creation and Destruction of Particles

New particles are created from dissociation reactions and from failed recombi-

nation reactions. Particles for this purpose are available from the reservoir. Once

all the reactions leading to the creation of a new particle have been identified, they

are enumerated and the enumeration is used as an index into the reservoir. The

appropriate state information is then sent to these reservoir particles to change

them to their new state.

160

The creation of particles in this manner leaves the system of particles in a

disordered state at the end of the time step. Consequently the merged ordered

subsets sorting algorithm must be revised to allow for this situation. Since the new

particles are, amongst themselves, in an ordered state, the sorting algorithm need

be revised only to include the merging of an additional ordered system.

The destruction of particles involves the same process as the removal of particles

which exit downstream of the simulation. These particles are simply converted

to reservoir particles by changing their physical state and setting their ceU index

to point to the reservoir. Since t_s process is identical to the removal of exited

particles, it proves most efficient to perform the two processes at the same time.

8.3.3 Estimated Cost

There are no apparent difficulties in extending the current implementation to

include multiple species and chemistry. The greatest foreseeable cost wiU be in

applying equation (8.5) to select pairs for collision. The straightforward application

of (8.5) requires the equivalent of 51 scan instructions at the VP ratio of the

particles' VP set. Since scans are about an order of magnitude faster than sends,

the associated communications cost would be approximately equivalent to 5 send

instructions. Therefore the amount of communications wiU probably be about

equivalent to that associated with re-ordering the particle data, which currently

takes 26% of the computational time (section 7.5). This, of course, is a very

approximate estimate. The cost for the arithmetic computation is equally difficult

to estimate but certainly wiU not exceed the cost of communication. Therefore

a very conservative estimate on the total additional cost for simulating multiple

species with chemistry is another 50% of the computational time.

161

Chapter 9

Concluding Remarks

9.1 Summary

Currently the fluid mechanics community is seeing a resurgence of interest in

rarefied gas dynamics, a regime where computational methods often offer the only

viable means of solving flow problems of practical interest. The method of direct

particle simulation is one of the few methods, suitable to this regime, which provides

accurate solutions at reasonable computational cost. Nonetheless, the expense

associated with this method is such that solutions to engineering problems almost

exclusively require the use of a supercomputer. The Stanford particle simulation

(SPS) method has been developed to make the most efficient use of supercomputer

architectures thereby allowing broader application of the direct particle simulation

method.

It is largely accepted that future improvements in supercomputing performance

will be in the direction of increased parallelism, and massively parallel architectures

represent the research frontier in this direction. The massively parallel architecture

of the Connection Machine has been successfully applied to a wide variety of

scientific problems. The purpose of the current work has been to investigate the

162

suitability of this architecture, and this machine in particular, for the direct particle

simulation of rarefied gas dynamic flows.

The work progressed in three stages. The first stage required the development

of data parallel algorithms for particle simulation. Some of these algorithms

were directly translatable from their vectorizable form, and these are described

in Chapter 3. However several of the vectorizable algorithms could not be readily

extended to data parallel form. These required new algorithms to be developed, and

in particular, the sorting algorithms of Chapter 4 were an outcome of this effort.

The second stage involved optimizing the implemented algorithms to the Con-

nection Machine architecture. This work required an intimate understanding of the

communications network and resulted in the development of new communications

algorithms. The master/slave algorithm of Chapter 5 was an important result of

this effort. A related algorithm also is applied to the sampling of macroscopic flow

quantities from the simulation and is described in section 3.4.

The third and final stage of the work required validating the implementation

and gauging its performance. A large number of test calculations were performed

and Chapter 7 presents the pertinent results. Thermal relaxation histories and the

shock wave profiles are standard test calculations used to validate computational

methods for rarefied gas dynamics. The reflected shock problem goes significantly

further as a validation both of the implementation and the method. The results from

that calculation also _ghlight some of the di_culties and inadequacies associated

with direct particle simulation, especially as the continuum limit is approached. As

further validation, the flow over a double ellipse was calculated and the results were

compared to those from the implementation of the SPS method on the Cray 2. This

calculation was also used to gauge the performance of the Connection Machine for

direct particle simulation, and this is discussed in some detail in section 7.5.

9.2 Conclusions

An important result of this investigation has been a quantitative measure of

163

the performance of the Connection Machine for direct particle simulation. From

this result it has been possible to conclude that the massively parallel architecture

of the Connection Machine is quite suitable for this type of calculation. However,

there are difilculties in taking full advantage of this architecture because of the lack

of a broad based tradition of data paraUel programming. An important outcome of

this work has been new data parallel algorithms specifically of use for direct particle

simulation but which also expand the data parallel diction.

r,

164

References

ALDOUS, D. and DIACONIS, P., American Mathematical Monthly, 93,333,

(1986).

ALSMEYER, H., Journal of Fluid Mechanics, 74, 497, (1976).

BAGANOFF, D., Journal of Fluid Mechanics, 23, 209, (1965).

BAGANOFF, D., Simulation of Gas Motion by a Collection of ParticleJ, Proceed-

ings of the IBM ACIS University Conference, Boston, Vol. II, p.304, (1987).

BAGANOFF, D. and MCDONALD, 3.D., A ColliJion-Selection Rule for a Particle

Simulation Method Suited to Vector ComputerJ, To appear in Physics of Fluids

A, (July 1990).

BIRD, G.A., Physics of Fluids, 6, 1518, (1963).

BIRD, G.A., Physics of Fluids, 13, 1172, (1970).

BIRD, G.A., Molecular Gas Dynamics, Clarendon Press, Oxford, (1976).

BIRD, G.A., Monte-Carlo Simulation in an Engineering Contezt, Invited paper

221, International Symposium on Rarefied Gas Dynamics, Charlottesville, Va.,

(1980).

BIRD, G.A., Physics of Fluids, 26, 3222, (1983).

165

BIRD, G.A., Perception of Numerical Methods in Rarefied Gasdynamics, Invited

paper, 16 th International Symposium on Rarefied Gas Dynamics, Pasadena, Ca.,

(1989).

BORGNAKKE, C. and LARSEN, P.S., Journal of Computational Physics, 18, 405,

(1975).

BOYD, I.D., Direct Simulation o/Rotational and Vibrational Nonequilibrium,

AIAA-89-1880, (1989).

BOYD, I.D., Vectorization of a Monte Carlo Scheme, Submitted to Journal of

Computational Physics, (1990).

BURNETT, D., Proceedings of the London Mathematical Society, 39, 382,

(1935).

?

DAVIS, J., DOMINY, R.G., HARVEY, J.K. and MACROSSAN, M.N., Journal of

Fluid Mechanics, 135,355, (1983).

FEIEREISEN, W.J. and MCDONALD, J.D., Three DimenJionaI Discrete Particle

Simulation o/an AOTV, AIAA-89--1711, (1989).

FEIEREISEN, W.J., An Assessment o/ "Shuffle Algorithm" Collision Mechanics

for Particle Simulation, 17 th International Symposium on Rarefied Gas Dynam-

ics, Aachen, Germany, (1990).

FEIEREISEN, W.J., The Hypersonic Double Ellipse in Rarefied Flow, INRIA

Workshop on Hypersonic Flows for Reentry Problems, Antibes, France, (1990).

FISCKO, K. A., Ph.D. Thesis, Dept. of Aeronautics and Astronautics, Stanford

University, (1989).

FLYNN, M.J., IEEE Trans. Computers, C-21 9, 948, (1972).

GOODMAN, F.O. and WACHMAN, H.Y., Dynamics of Gas-Surface Scattering,

Academic Press, (1976).

GUTTMAN, I., WlLKS, S.S. and HUNTER, J.S., Introductory Engineering

Statistics, :John Wiley and Sons, Inc., Toronto, (1971).

HAAS, B.L., Fundamentals of Chemistry Modelling Applicable to a Vectorized

Particle Simulation, AIAA-90-1749, (1990).

166

HANSEN, C.F., Rate Processes in Gas Phase, NASA Reference Publication 1090,

(1983).

HANSON, R.K., AIAA Journal, 9, 1811, (1971).

HILLIS, W.D. and STEELE, G.L., Communications of the ACM, 29, 1170,

(1986).

HINSHELWOOD, C.N., The Kinetics of Chemical Change , Clarendon Press,

Oxford, (1940).

HURLBUT, F.C., Gas/Surface Scatter Models for Satellite Applications, AIAA

Progress in Aeronautics and Astronautics, Vol. 103, pp. 98-119, (1986).

KNUTH, D.E., The Art of Computer Programming; Volume _: Seminurnerical

Algorithms, Addison Wesley Publishing Company, (1973).

LORDI, J.A. and MATES, R.E., Physics of Fluids, 13, 291, (1970).

LUMPKIN, F.E., Ph.D. Thesis, Dept. of Aeronautics and Astronautics, Stanford

University, (1990).

LUMPKIN, F.E., CHAPMAN, D.R. and PARK, C., A New Rotational ReIazation

Model for Use In Hypersonic Computational Fluid Mechanics, AIAA-89-1737,

(1989).

MCDONALD, J.D. and BAGANOFF, D., Vectorization of a Particle Simulation

Method for Hypersonic Rarefied Flow, AIAA-88-2735, (1988).

MCDONALD, J.D., Ph.D. Thesis, Dept. of Aeronautics and Astronautics,

Stanford University, (1990).

MELVILLE, W.K., Journal of Fluid Mechanics, 51,571, (1972).

Moss, J.N. and BIRD, G.A., Direct Simulation of Transitional Flow for Hyper-

sonic Reentry Conditions, AIAA Progress in Aeronautics and Astronautics, Vol.

96, pp. 113-139, (1985).

MYERS, D.W. and ADAMS, G.B., Benchmarking and Performance Analysis

of the CM-I_, Proceedings of the Conference on Scientific Applications of the

Connection Machine, Moffet Field, Ca., (1988).

167

NANBU, K., Journal of the Physical Society of Japan, 49, 2042, (1980).

PARKER, C., Physics of Fluids, 2, 449, (1959).

PATTERSON, G.N., Molecular Flow of Gases, John Wiley and Sons, Inc., New

York, (1956).

PLOSS, H., Computing, 38, 101, (1987).

PRYOR, D.V. and BURNS, P.J, Vectorized Monte Carlo Molecular Aerodynamics

Simulation of the Rayleigh Problem, Proceedings of Supercomputing '88, Or-

lando, pp. 384-391, (1988).

PULLIN, D.I., Physics of Fluids, 21,209, (1978).

THINKING MACHINES CORP., The Connection Machine System, Paris Release

Notes, Thinking Machines Corp., (1989).

VINCENTI, W.G. and KRUGER, C.H., Introduction to Physical Gas Dynamics,

John Wiley and Sons, Inc., New York, (1965).

WENAAS, E.P., Journal of Chemical Physics, 54, 376, (1971).

WORONOWICZ, M.S. and McDONALD, J.D., Application of a Vectorized Particle

Simulation in High-Speed Near-Continuum Flow, AIAA-89-1665, (1989).

168

